cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A242719 Smallest even k such that lpf(k-3) > lpf(k-1) >= prime(n), where lpf=least prime factor (A020639).

Original entry on oeis.org

10, 26, 50, 170, 170, 362, 362, 842, 842, 1370, 1370, 1850, 1850, 2210, 3722, 3722, 3722, 4892, 5042, 7082, 7922, 7922, 7922, 10610, 10610, 10610, 11450, 13844, 16130, 16130, 17162, 19322, 19322, 24614, 24614, 25592, 29504, 29930, 29930, 36020, 36020
Offset: 2

Views

Author

Vladimir Shevelev, May 21 2014

Keywords

Comments

The sequence is connected with a sufficient condition for the existence of an infinity of twin primes. In contrast to A242489, this sequence is nondecreasing.
All even numbers of the form A062326(n)^2 + 1 are in the sequence. All a(n)-1 are semiprimes. - Vladimir Shevelev, May 24 2014
a(n) <= A242489(n); a(n) >= prime(n)^2+1. Conjecture: a(n) <= prime(n)^4. - Vladimir Shevelev, Jun 01 2014
Conjecture: all numbers a(n)-3 are primes. Peter J. C. Moses verified this conjecture up to a(2001) (cf. with conjecture in A242720). - Vladimir Shevelev, Jun 09 2014

Crossrefs

Programs

  • Mathematica
    lpf[k_] := FactorInteger[k][[1, 1]];
    a[n_] := a[n] = For[k = If[n == 2, 10, a[n-1]], True, k = k+2, If[lpf[k-3] > lpf[k-1] >= Prime[n], Return[k]]];
    Array[a, 50, 2] (* Jean-François Alcover, Nov 06 2018 *)
  • PARI
    lpf(k) = factorint(k)[1,1];
    vector(50, n, k=6; while(lpf(k-3)<=lpf(k-1) || lpf(k-1)Colin Barker, Jun 01 2014

Formula

Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246819). - Vladimir Shevelev, Sep 02 2014
a(n) = prime(n)^2 + 1 for and only for numbers n>=2 which are in A137291. - Vladimir Shevelev, Sep 04 2014

A245363 Numbers n for which A242719(n) = prime(n)*(prime(n)+6) + 1.

Original entry on oeis.org

19, 37, 49, 69, 73, 102, 165, 236, 253, 365, 465, 542, 595, 694, 713, 723, 762, 920, 962, 979, 1119, 1162, 1259, 1334, 1387, 1441, 1706, 1797, 1843, 1906
Offset: 1

Views

Author

Vladimir Shevelev, Sep 09 2014

Keywords

Comments

These are such numbers n for which prime(n), prime(n)+6, prime(n)*(prime(n)+6)-2 are primes, but prime(n) is not in A062326; besides, if prime(n) is in A001359, then also prime(n+1) is not in A062326.
Prime(n)*(prime(n)+6) + 1 is the third minimal possible value of A242719(n) after prime(n)^2 + 1 and (prime(n)+2)^2 + 1 (cf. A247011 and comment there).

Crossrefs

Formula

prime(n) == 7 (mod 10), A242719(n) == 92 (mod 100).

Extensions

More terms from Peter J. C. Moses, Sep 09 2014

A247280 Numbers n for which A242720(n) = prime(n)*(prime(n)+4)+3.

Original entry on oeis.org

4, 6, 8, 19, 50, 59, 63, 65, 78, 85, 93, 112, 117, 143, 237, 254, 264, 276, 287, 303, 333, 371, 380, 425, 435, 440, 447, 459, 483, 485, 537, 612, 614, 659, 731, 851, 877, 920, 983, 994, 1025, 1080, 1096, 1182, 1358, 1380, 1468, 1476, 1481, 1582, 1628, 1690
Offset: 1

Views

Author

Vladimir Shevelev, Sep 11 2014

Keywords

Comments

prime(n)*(prime(n)+4) + 3, such that prime(n)+4 and prime(n)*(prime(n)+4)+2 are primes, is the second minimal possible value of A242720(n) after (prime(n)+1)^2 + 2, n>=3 (cf. A246824).

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 11 2014

A247549 Numbers n for which A242720(n) = prime(n)*(prime(n)+8)+3.

Original entry on oeis.org

5, 32, 43, 79, 126, 142, 523, 576, 722, 771, 1026, 1152, 1234, 1402, 1442, 1480, 1623, 1630, 1767, 1814, 1829, 1962, 1995, 2062, 2084, 2353, 2705, 3104, 3174, 3355, 3588, 3718, 4005, 4035, 4126, 4266, 4581, 4616, 4785, 4854, 4859, 5068, 5131, 5145, 5164
Offset: 1

Views

Author

Vladimir Shevelev, Sep 19 2014

Keywords

Comments

prime(n)*(prime(n)+8) + 3, such that prime(n)+8 and prime(n)*(prime(n)+8)+2 are primes, is the third minimal possible value of A242720(n) after (prime(n)+1)^2 + 2, n>=3 (cf. A246824) and prime(n)*(prime(n)+4) + 3 (cf. A247280).

Crossrefs

Formula

If n is in the sequence, then prime(n) == 1 (mod 10), A242720(n) == 12 (mod 100).

Extensions

More terms from Peter J. C. Moses, Sep 19 2014
Showing 1-4 of 4 results.