cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A242719 Smallest even k such that lpf(k-3) > lpf(k-1) >= prime(n), where lpf=least prime factor (A020639).

Original entry on oeis.org

10, 26, 50, 170, 170, 362, 362, 842, 842, 1370, 1370, 1850, 1850, 2210, 3722, 3722, 3722, 4892, 5042, 7082, 7922, 7922, 7922, 10610, 10610, 10610, 11450, 13844, 16130, 16130, 17162, 19322, 19322, 24614, 24614, 25592, 29504, 29930, 29930, 36020, 36020
Offset: 2

Views

Author

Vladimir Shevelev, May 21 2014

Keywords

Comments

The sequence is connected with a sufficient condition for the existence of an infinity of twin primes. In contrast to A242489, this sequence is nondecreasing.
All even numbers of the form A062326(n)^2 + 1 are in the sequence. All a(n)-1 are semiprimes. - Vladimir Shevelev, May 24 2014
a(n) <= A242489(n); a(n) >= prime(n)^2+1. Conjecture: a(n) <= prime(n)^4. - Vladimir Shevelev, Jun 01 2014
Conjecture: all numbers a(n)-3 are primes. Peter J. C. Moses verified this conjecture up to a(2001) (cf. with conjecture in A242720). - Vladimir Shevelev, Jun 09 2014

Crossrefs

Programs

  • Mathematica
    lpf[k_] := FactorInteger[k][[1, 1]];
    a[n_] := a[n] = For[k = If[n == 2, 10, a[n-1]], True, k = k+2, If[lpf[k-3] > lpf[k-1] >= Prime[n], Return[k]]];
    Array[a, 50, 2] (* Jean-François Alcover, Nov 06 2018 *)
  • PARI
    lpf(k) = factorint(k)[1,1];
    vector(50, n, k=6; while(lpf(k-3)<=lpf(k-1) || lpf(k-1)Colin Barker, Jun 01 2014

Formula

Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246819). - Vladimir Shevelev, Sep 02 2014
a(n) = prime(n)^2 + 1 for and only for numbers n>=2 which are in A137291. - Vladimir Shevelev, Sep 04 2014

A242720 Smallest even k such that the pair {k-3,k-1} is not a twin prime pair and lpf(k-1) > lpf(k-3) >= prime(n), where lpf = least prime factor (A020639).

Original entry on oeis.org

12, 38, 80, 212, 224, 440, 440, 854, 1250, 1460, 1742, 2282, 2282, 3434, 4190, 4664, 4760, 4760, 6890, 8054, 8054, 8054, 12374, 12830, 12830, 13592, 13592, 14282, 17402, 17402, 18212, 22502, 22502, 22502, 25220, 28202, 28202, 32234, 32402, 32402, 38012
Offset: 2

Views

Author

Vladimir Shevelev, May 21 2014

Keywords

Comments

The sequence is nondecreasing. See comment in A242758.
a(n) >= prime(n)^2+3. Conjecture: a(n) <= prime(n)^4. - Vladimir Shevelev, Jun 01 2014
Conjecture. There are only a finite number of composite numbers of the form a(n)-1. Peter J. C. Moses found only two: a(16)-1 = 4189 = 59*71 and a(20)-1 = 6889 = 83^2 and no others up to a(2501). Most likely, there are no others. - Vladimir Shevelev, Jun 09 2014

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[1, 1]];
    Clear[a]; a[n_] := a[n] = For[k = If[n <= 2, 2, a[n-1]], True, k = k+2, If[Not[PrimeQ[k-3] && PrimeQ[k-1]] && lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]];
    Table[a[n], {n, 2, 50}] (* Jean-François Alcover, Nov 02 2018 *)
  • PARI
    lpf(k) = factorint(k)[1,1];
    vector(60, n, k=6; while((isprime(k-3) && isprime(k-1)) || lpf(k-1)<=lpf(k-3) || lpf(k-3)Colin Barker, Jun 01 2014

Formula

Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246821). - Vladimir Shevelev, Sep 02 2014
For n>=3, a(n) >= (prime(n)+1)^2 + 2. Equality holds for terms of A246824. - Vladimir Shevelev, Sep 04 2014

A243803 Number of numbers k in interval [(p_n)^2+1, (p_n)^4] for which lpf(k-3)>lpf(k-1)>=p_n, where p_n=prime(n) and lpf = A020639.

Original entry on oeis.org

40, 85, 393, 625, 1557, 2106, 4069, 9558, 11476, 22060, 31530, 35998, 49142, 76678, 113799, 125010, 176824, 216378, 234064, 313511, 372054, 481764, 668344, 768307, 811635, 926452, 975785, 1105924, 1751993, 1949976, 2299392, 2394921, 3130534, 3250605, 3751262, 4306910, 4683674, 5332960
Offset: 3

Views

Author

Keywords

Comments

a(n) and A243804(n) approximate each other with a small relative error.
Positions n for which a(n) < A243804(n) are 11, 13, 14, 17, 18, 19, 20 (...).

Crossrefs

A243804 Number of numbers k in interval [(p_n)^2+1, (p_n)^4] for which lpf(k-1)>lpf(k-3)>=p_n, such that {k-3, k-1} is not a pair of twin primes, where p_n=prime(n) and lpf = A020639.

Original entry on oeis.org

36, 84, 382, 593, 1526, 2070, 4023, 9536, 11535, 22050, 31552, 36034, 49032, 76464, 113887, 125138, 176940, 216419, 233932, 313011, 371787, 480984, 666608, 767403, 811022, 925567, 974900, 1104796, 1749737, 1948447, 2298322, 2393928, 3129862, 3248932, 3750166, 4305141, 4682343, 5332158
Offset: 3

Views

Author

Keywords

Comments

a(n) and A243803(n) approximate each other with the relative error tending to zero with growth of n.

Crossrefs

A247280 Numbers n for which A242720(n) = prime(n)*(prime(n)+4)+3.

Original entry on oeis.org

4, 6, 8, 19, 50, 59, 63, 65, 78, 85, 93, 112, 117, 143, 237, 254, 264, 276, 287, 303, 333, 371, 380, 425, 435, 440, 447, 459, 483, 485, 537, 612, 614, 659, 731, 851, 877, 920, 983, 994, 1025, 1080, 1096, 1182, 1358, 1380, 1468, 1476, 1481, 1582, 1628, 1690
Offset: 1

Views

Author

Vladimir Shevelev, Sep 11 2014

Keywords

Comments

prime(n)*(prime(n)+4) + 3, such that prime(n)+4 and prime(n)*(prime(n)+4)+2 are primes, is the second minimal possible value of A242720(n) after (prime(n)+1)^2 + 2, n>=3 (cf. A246824).

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 11 2014

A247279 Numbers n such that A242720(n) = prime(n)*(prime(n)+4)+3 and A242719(n) - A242720(n) = 2*(prime(n)-1).

Original entry on oeis.org

19, 920, 2869, 4704, 8125, 10194, 10939, 17588, 22661, 29856, 31178, 31779, 53624, 59035, 61931, 66944, 72104, 81247, 91456, 98840, 103631, 106187, 117959, 123535, 131824, 133446, 168209, 184888, 189389, 214743, 215352, 218421, 218799, 227088, 237917, 245854
Offset: 1

Views

Author

Keywords

Comments

The sequence is infinite if there are infinitely many primes p_n such that p_n+4, p_n+6, p_n*(p_n+4)+2, p_n*(p_n+6)-2 are primes, but p_n^2-2 is not prime.
If the sequence A246748 is also infinite, then these two sequences show that the difference A242720(n) - A242719(n) changes its sign infinitely many times.

Examples

			If n=920, prime(920)=7207, we have A242720(920) = 7207*7211+3 = 51969680 and A242919(920) -  A242920(920) = 51984092 - 51969680 = 14412 = 2*(prime(920)-1).
		

Crossrefs

Formula

Intersection of A245363 and A247280.

A247549 Numbers n for which A242720(n) = prime(n)*(prime(n)+8)+3.

Original entry on oeis.org

5, 32, 43, 79, 126, 142, 523, 576, 722, 771, 1026, 1152, 1234, 1402, 1442, 1480, 1623, 1630, 1767, 1814, 1829, 1962, 1995, 2062, 2084, 2353, 2705, 3104, 3174, 3355, 3588, 3718, 4005, 4035, 4126, 4266, 4581, 4616, 4785, 4854, 4859, 5068, 5131, 5145, 5164
Offset: 1

Views

Author

Vladimir Shevelev, Sep 19 2014

Keywords

Comments

prime(n)*(prime(n)+8) + 3, such that prime(n)+8 and prime(n)*(prime(n)+8)+2 are primes, is the third minimal possible value of A242720(n) after (prime(n)+1)^2 + 2, n>=3 (cf. A246824) and prime(n)*(prime(n)+4) + 3 (cf. A247280).

Crossrefs

Formula

If n is in the sequence, then prime(n) == 1 (mod 10), A242720(n) == 12 (mod 100).

Extensions

More terms from Peter J. C. Moses, Sep 19 2014
Showing 1-7 of 7 results.