cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A246748 Numbers n such that A242719(n) = (prime(n))^2+1 and A242720(n) - A242719(n) = 2*(prime(n)+1).

Original entry on oeis.org

3, 52, 104, 209, 343, 373, 398, 473, 628, 2633, 3273, 7538, 8060, 8813, 9025, 10847, 12493, 13768, 14196, 15486, 16865, 17486, 18362, 18613, 18842, 21175, 23522, 31825, 33537, 34507, 38740, 39603, 41802, 41947, 43314, 45479, 47550, 47668, 47787, 50321, 50682
Offset: 1

Views

Author

Vladimir Shevelev, Sep 02 2014

Keywords

Comments

If the sequence is infinite, then lim inf(A242719(k)/(prime(k))^2) = 1 and lim inf(A242720(k)/(prime(k))^2) = 1.
In connection with this, one can conjecture that A242719(k) ~ A242720(k) ~ (prime(k))^2, as k goes to infinity (cf. A246819, A246821).
n is in the sequence if and only if prime(n)>=5 and is in the intersection of A001359, A062326, A157468.
Proof. Firstly note that A242719(n) = prime(n)^2 + 1 if and only if prime(n)^2 - 2 is prime. Indeed, let prime(n)^2 + 1 be A242719(n). Then we have lpf(prime(n)^2 - 2) > lpf(prime(n)^2) = prime(n). It is possible only when prime(n)^2 - 2 is prime, i. e., prime(n) is in A062326. Add that prime(n)^2+1 is the smallest value of A242719(n).
Let A242720(n) = A242719(n) + 2*prime(n) + 2 = prime(n)^2 + 2*prime(n) + 3. Then, by the definition of A242720, we have lpf(prime(n)^2 + 2*prime(n) + 2) > lpf(prime(n)*(prime(n)+2)) >= prime(n). Thus prime(n) + 2 is prime, i.e., prime(n) is in A001359. Besides, lpf(prime(n)^2 + 2*prime(n) + 2) > prime(n), or lpf((prime(n)+1)^2 + 1) >= prime(n+1) = prime(n) + 2. So (prime(n)+1)^2+1 is prime, i.e., prime(n) is also in A157468.
Add that, for n>=3, N=prime(n)^2 + 2*prime(n) + 3 is the smallest possible value of A242720(n). Indeed, let prime(n)^2+1 <= N <= prime(n)^2 + 2*prime(n) + 2. Then prime(n)^2-2 <= N - 3 <= prime(n)^2 + 2*prime(n) - 1. Since it should be lpf(N-3) >= prime(n), then there are only two possibilities: N-3 = prime(n)^2 + prime(n) or N-3 = prime(n)^2. However, lpf(prime(n)^2 + prime(n)) = 2, while, although lpf(prime(n)^2) = prime(n), however, in this case, lpf(N-1) = lpf(prime(n)^2+2) = 3, n>=3, and, so the inequalities lpf(N-1) > lpf(N-3) >= prime(n) are impossible in the considered cases for n>=3. - Vladimir Shevelev, Sep 03 2014

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 02 2014

A242847 Numbers n for which A242719(n) > A242720(n).

Original entry on oeis.org

19, 35, 38, 41, 45, 50, 53, 56, 57, 58, 59, 63, 76, 77, 78, 79, 80, 81, 83, 84, 85, 92, 93, 95, 96, 108, 109, 112, 113, 116, 117, 124, 125, 126, 142, 143, 146, 154, 157, 173, 184, 185, 186, 193, 194, 195, 196, 197, 203, 215, 217, 224, 227, 232, 233, 237, 241
Offset: 1

Views

Author

Vladimir Shevelev, Jun 02 2014

Keywords

Comments

The sequence is infinite, in view of a strong closeness between counting functions of numbers N_1 for which lpf(N_1-3) > lpf(N_1-1) >= prime(n) and numbers N_2 for which lpf(N_2-1) > lpf(N_2-3) >= prime(n), if {N_2-3, N_2-1} is not a pair of twin primes, where p_n=prime(n) and lpf=least prime factor (A020639). (Cf., for example, A243803-A243804). This closeness is explained by a somewhat symmetry (for details, see Shevelev's link).
However, it is very interesting to find an analytical proof of infinity of this and complementory sequences.

Crossrefs

Programs

  • Mathematica
    lpf[k_] := FactorInteger[k][[1, 1]];
    a19[n_ /; n>1] := a19[n] = For[k = If[n == 2, 10, a19[n-1]], True, k = k+2, If[lpf[k-3] > lpf[k-1] >= Prime[n], Return[k]]];
    a20[n_ /; n>1] := a20[n] = For[k = If[n <= 2, 2, a20[n-1]], True, k = k+2, If[Not[PrimeQ[k-3] && PrimeQ[k-1]] && lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]];
    Select[Range[250], a19[#] > a20[#]&] (* Jean-François Alcover, Nov 06 2018 *)

Extensions

More terms from Peter J. C. Moses, Jun 02 2014

A246824 Numbers k for which A242720(k) = (prime(k)+1)^2 + 2.

Original entry on oeis.org

3, 35, 41, 52, 57, 81, 104, 209, 215, 343, 373, 398, 473, 477, 584, 628, 768, 774, 828, 872, 1117, 1145, 1189, 1287, 1324, 1435, 1615, 1634, 1653, 1704, 1886, 1925, 2070, 2075, 2123, 2171, 2193, 2425, 2449, 2605, 2633, 2934, 2948, 3019, 3194, 3273, 3533, 3552, 3685, 3758
Offset: 1

Views

Author

Vladimir Shevelev, Sep 04 2014

Keywords

Comments

By a comment in A246748, A242720(k) >= (prime(k)+1)^2 + 2, and equality is attained in this sequence.
Prime(a(n)) >= 5 and is in the intersection of A001359 and A157468.

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[1, 1]]; aQ[n_] := Module[{k=6}, While[PrimeQ[k-3] && PrimeQ[k-1] || lpf[k-1]<=lpf[k-3] || lpf[k-3]Amiram Eldar, Dec 10 2018 *)
  • PARI
    lpf(k) = factorint(k)[1, 1];
    f(n) = my(k=6); while((isprime(k-3) && isprime(k-1)) || lpf(k-1)<=lpf(k-3) || lpf(k-3)A242720
    isok(n) = f(n) == (prime(n)+1)^2 + 2; \\ Michel Marcus, Dec 10 2018
    
  • Python
    from sympy import prime, isprime, factorint
    A246824_list = [a for a, b in ((n, prime(n)+1) for n in range(3,10**3)) if (not (isprime(b**2-1) and isprime(b**2+1)) and (min(factorint(b**2+1)) > min(factorint(b**2-1)) >= b-1))] # Chai Wah Wu, Jun 03 2019

Extensions

a(40)-a(50) from b-file by Robert Price, Sep 08 2019

A246821 Max _{2<=k<=n} floor(A242720(k)/prime(k)) - prime(n).

Original entry on oeis.org

1, 2, 4, 8, 6, 8, 6, 14, 14, 16, 10, 14, 12, 26, 26, 20, 18, 12, 26, 37, 31, 27, 50, 42, 38, 36, 32, 30, 41, 27, 23, 27, 25, 15, 16, 22, 16, 26, 20, 14, 29, 19, 34, 30, 40, 40, 28, 24, 22, 18, 12, 10, 20, 20, 14, 8, 16, 10, 26, 41, 31, 17, 13, 11, 45, 31, 47
Offset: 2

Views

Author

Vladimir Shevelev, Sep 04 2014

Keywords

Comments

Conjecture: a(n) = o(prime(n)), as n goes to infinity.
If the conjecture is true, then A242720(n) ~ prime(n)^2. Indeed, A242720(n) >= prime(n)^2 + 2*prime(n) + 3; on the other hand, by the conjecture, we have A242720(n)/prime(n) <= a(n) + 1 + prime(n) = prime(n)*(1+o(1)).

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 04 2014

A247280 Numbers n for which A242720(n) = prime(n)*(prime(n)+4)+3.

Original entry on oeis.org

4, 6, 8, 19, 50, 59, 63, 65, 78, 85, 93, 112, 117, 143, 237, 254, 264, 276, 287, 303, 333, 371, 380, 425, 435, 440, 447, 459, 483, 485, 537, 612, 614, 659, 731, 851, 877, 920, 983, 994, 1025, 1080, 1096, 1182, 1358, 1380, 1468, 1476, 1481, 1582, 1628, 1690
Offset: 1

Views

Author

Vladimir Shevelev, Sep 11 2014

Keywords

Comments

prime(n)*(prime(n)+4) + 3, such that prime(n)+4 and prime(n)*(prime(n)+4)+2 are primes, is the second minimal possible value of A242720(n) after (prime(n)+1)^2 + 2, n>=3 (cf. A246824).

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 11 2014

A246502 a(n) is the smallest term of A242720 that is repeated exactly n times, or 0 if there is no such term.

Original entry on oeis.org

12, 440, 8054, 129554, 227432, 7986230, 62015624, 280729964
Offset: 1

Views

Author

Vladimir Shevelev, Aug 27 2014

Keywords

Comments

We conjecture that a(n)>0.

Crossrefs

Extensions

More terms from Peter J. C. Moses, Aug 27 2014

A247279 Numbers n such that A242720(n) = prime(n)*(prime(n)+4)+3 and A242719(n) - A242720(n) = 2*(prime(n)-1).

Original entry on oeis.org

19, 920, 2869, 4704, 8125, 10194, 10939, 17588, 22661, 29856, 31178, 31779, 53624, 59035, 61931, 66944, 72104, 81247, 91456, 98840, 103631, 106187, 117959, 123535, 131824, 133446, 168209, 184888, 189389, 214743, 215352, 218421, 218799, 227088, 237917, 245854
Offset: 1

Views

Author

Keywords

Comments

The sequence is infinite if there are infinitely many primes p_n such that p_n+4, p_n+6, p_n*(p_n+4)+2, p_n*(p_n+6)-2 are primes, but p_n^2-2 is not prime.
If the sequence A246748 is also infinite, then these two sequences show that the difference A242720(n) - A242719(n) changes its sign infinitely many times.

Examples

			If n=920, prime(920)=7207, we have A242720(920) = 7207*7211+3 = 51969680 and A242919(920) -  A242920(920) = 51984092 - 51969680 = 14412 = 2*(prime(920)-1).
		

Crossrefs

Formula

Intersection of A245363 and A247280.

A243200 Let A242720(n)-3 = prime(l)*prime(m), l<=m; a(n)=m-l.

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 1, 3, 4, 4, 3, 2, 2, 6, 6, 5, 1, 1, 5, 2, 2, 2, 10, 5, 5, 3, 3, 3, 2, 2, 2, 1, 1, 1, 3, 2, 2, 5, 1, 1, 3, 3, 3, 3, 6, 7, 4, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 2, 2, 2, 2, 2, 2, 8, 6, 6, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 4, 2, 2
Offset: 2

Views

Author

Vladimir Shevelev, Jun 01 2014

Keywords

Comments

Since for a prime p>3, p^2 == 1 (mod 3), then for n>2, A242720(n) is not equal to p^2 + 3 (otherwise, lpf(A242720(n) - 1) = 3). So, the sequence has only zero term a(2).

Crossrefs

Extensions

More terms from Peter J. C. Moses, Jun 01 2014

A243990 Primes which do not divide the numbers of the form A242720(n)-3.

Original entry on oeis.org

2, 41, 61, 103, 113, 157, 227, 263, 283, 337, 349, 373, 383, 389, 431, 433, 449, 457, 557, 563, 577, 601, 631, 641, 677, 683, 691, 733, 751, 857, 881, 883, 911, 929, 953, 967, 983, 991, 1009, 1039, 1093, 1097, 1151, 1181, 1279, 1303, 1373, 1427, 1451, 1481
Offset: 1

Views

Author

Vladimir Shevelev, Jun 17 2014

Keywords

Comments

If a prime p=prime(k) does not divide A242720(i)-3 for i=2,3,...,k, then it is in the sequence.

Crossrefs

Extensions

More terms from Peter J. C. Moses, Jun 18 2014

A247549 Numbers n for which A242720(n) = prime(n)*(prime(n)+8)+3.

Original entry on oeis.org

5, 32, 43, 79, 126, 142, 523, 576, 722, 771, 1026, 1152, 1234, 1402, 1442, 1480, 1623, 1630, 1767, 1814, 1829, 1962, 1995, 2062, 2084, 2353, 2705, 3104, 3174, 3355, 3588, 3718, 4005, 4035, 4126, 4266, 4581, 4616, 4785, 4854, 4859, 5068, 5131, 5145, 5164
Offset: 1

Views

Author

Vladimir Shevelev, Sep 19 2014

Keywords

Comments

prime(n)*(prime(n)+8) + 3, such that prime(n)+8 and prime(n)*(prime(n)+8)+2 are primes, is the third minimal possible value of A242720(n) after (prime(n)+1)^2 + 2, n>=3 (cf. A246824) and prime(n)*(prime(n)+4) + 3 (cf. A247280).

Crossrefs

Formula

If n is in the sequence, then prime(n) == 1 (mod 10), A242720(n) == 12 (mod 100).

Extensions

More terms from Peter J. C. Moses, Sep 19 2014
Showing 1-10 of 28 results. Next