cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A242720 Smallest even k such that the pair {k-3,k-1} is not a twin prime pair and lpf(k-1) > lpf(k-3) >= prime(n), where lpf = least prime factor (A020639).

Original entry on oeis.org

12, 38, 80, 212, 224, 440, 440, 854, 1250, 1460, 1742, 2282, 2282, 3434, 4190, 4664, 4760, 4760, 6890, 8054, 8054, 8054, 12374, 12830, 12830, 13592, 13592, 14282, 17402, 17402, 18212, 22502, 22502, 22502, 25220, 28202, 28202, 32234, 32402, 32402, 38012
Offset: 2

Views

Author

Vladimir Shevelev, May 21 2014

Keywords

Comments

The sequence is nondecreasing. See comment in A242758.
a(n) >= prime(n)^2+3. Conjecture: a(n) <= prime(n)^4. - Vladimir Shevelev, Jun 01 2014
Conjecture. There are only a finite number of composite numbers of the form a(n)-1. Peter J. C. Moses found only two: a(16)-1 = 4189 = 59*71 and a(20)-1 = 6889 = 83^2 and no others up to a(2501). Most likely, there are no others. - Vladimir Shevelev, Jun 09 2014

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[1, 1]];
    Clear[a]; a[n_] := a[n] = For[k = If[n <= 2, 2, a[n-1]], True, k = k+2, If[Not[PrimeQ[k-3] && PrimeQ[k-1]] && lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]];
    Table[a[n], {n, 2, 50}] (* Jean-François Alcover, Nov 02 2018 *)
  • PARI
    lpf(k) = factorint(k)[1,1];
    vector(60, n, k=6; while((isprime(k-3) && isprime(k-1)) || lpf(k-1)<=lpf(k-3) || lpf(k-3)Colin Barker, Jun 01 2014

Formula

Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246821). - Vladimir Shevelev, Sep 02 2014
For n>=3, a(n) >= (prime(n)+1)^2 + 2. Equality holds for terms of A246824. - Vladimir Shevelev, Sep 04 2014

A246748 Numbers n such that A242719(n) = (prime(n))^2+1 and A242720(n) - A242719(n) = 2*(prime(n)+1).

Original entry on oeis.org

3, 52, 104, 209, 343, 373, 398, 473, 628, 2633, 3273, 7538, 8060, 8813, 9025, 10847, 12493, 13768, 14196, 15486, 16865, 17486, 18362, 18613, 18842, 21175, 23522, 31825, 33537, 34507, 38740, 39603, 41802, 41947, 43314, 45479, 47550, 47668, 47787, 50321, 50682
Offset: 1

Views

Author

Vladimir Shevelev, Sep 02 2014

Keywords

Comments

If the sequence is infinite, then lim inf(A242719(k)/(prime(k))^2) = 1 and lim inf(A242720(k)/(prime(k))^2) = 1.
In connection with this, one can conjecture that A242719(k) ~ A242720(k) ~ (prime(k))^2, as k goes to infinity (cf. A246819, A246821).
n is in the sequence if and only if prime(n)>=5 and is in the intersection of A001359, A062326, A157468.
Proof. Firstly note that A242719(n) = prime(n)^2 + 1 if and only if prime(n)^2 - 2 is prime. Indeed, let prime(n)^2 + 1 be A242719(n). Then we have lpf(prime(n)^2 - 2) > lpf(prime(n)^2) = prime(n). It is possible only when prime(n)^2 - 2 is prime, i. e., prime(n) is in A062326. Add that prime(n)^2+1 is the smallest value of A242719(n).
Let A242720(n) = A242719(n) + 2*prime(n) + 2 = prime(n)^2 + 2*prime(n) + 3. Then, by the definition of A242720, we have lpf(prime(n)^2 + 2*prime(n) + 2) > lpf(prime(n)*(prime(n)+2)) >= prime(n). Thus prime(n) + 2 is prime, i.e., prime(n) is in A001359. Besides, lpf(prime(n)^2 + 2*prime(n) + 2) > prime(n), or lpf((prime(n)+1)^2 + 1) >= prime(n+1) = prime(n) + 2. So (prime(n)+1)^2+1 is prime, i.e., prime(n) is also in A157468.
Add that, for n>=3, N=prime(n)^2 + 2*prime(n) + 3 is the smallest possible value of A242720(n). Indeed, let prime(n)^2+1 <= N <= prime(n)^2 + 2*prime(n) + 2. Then prime(n)^2-2 <= N - 3 <= prime(n)^2 + 2*prime(n) - 1. Since it should be lpf(N-3) >= prime(n), then there are only two possibilities: N-3 = prime(n)^2 + prime(n) or N-3 = prime(n)^2. However, lpf(prime(n)^2 + prime(n)) = 2, while, although lpf(prime(n)^2) = prime(n), however, in this case, lpf(N-1) = lpf(prime(n)^2+2) = 3, n>=3, and, so the inequalities lpf(N-1) > lpf(N-3) >= prime(n) are impossible in the considered cases for n>=3. - Vladimir Shevelev, Sep 03 2014

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 02 2014

A246824 Numbers k for which A242720(k) = (prime(k)+1)^2 + 2.

Original entry on oeis.org

3, 35, 41, 52, 57, 81, 104, 209, 215, 343, 373, 398, 473, 477, 584, 628, 768, 774, 828, 872, 1117, 1145, 1189, 1287, 1324, 1435, 1615, 1634, 1653, 1704, 1886, 1925, 2070, 2075, 2123, 2171, 2193, 2425, 2449, 2605, 2633, 2934, 2948, 3019, 3194, 3273, 3533, 3552, 3685, 3758
Offset: 1

Views

Author

Vladimir Shevelev, Sep 04 2014

Keywords

Comments

By a comment in A246748, A242720(k) >= (prime(k)+1)^2 + 2, and equality is attained in this sequence.
Prime(a(n)) >= 5 and is in the intersection of A001359 and A157468.

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[1, 1]]; aQ[n_] := Module[{k=6}, While[PrimeQ[k-3] && PrimeQ[k-1] || lpf[k-1]<=lpf[k-3] || lpf[k-3]Amiram Eldar, Dec 10 2018 *)
  • PARI
    lpf(k) = factorint(k)[1, 1];
    f(n) = my(k=6); while((isprime(k-3) && isprime(k-1)) || lpf(k-1)<=lpf(k-3) || lpf(k-3)A242720
    isok(n) = f(n) == (prime(n)+1)^2 + 2; \\ Michel Marcus, Dec 10 2018
    
  • Python
    from sympy import prime, isprime, factorint
    A246824_list = [a for a, b in ((n, prime(n)+1) for n in range(3,10**3)) if (not (isprime(b**2-1) and isprime(b**2+1)) and (min(factorint(b**2+1)) > min(factorint(b**2-1)) >= b-1))] # Chai Wah Wu, Jun 03 2019

Extensions

a(40)-a(50) from b-file by Robert Price, Sep 08 2019

A246819 Max_{2<=k<=n} floor(A242719(k)/prime(k)) - prime(n).

Original entry on oeis.org

0, 0, 0, 4, 2, 4, 2, 13, 7, 13, 7, 4, 2, 0, 17, 11, 9, 6, 2, 24, 21, 17, 11, 12, 8, 6, 2, 18, 29, 15, 11, 5, 3, 16, 14, 8, 18, 14, 8, 22, 20, 10, 30, 29, 27, 15, 3, 6, 8, 4, 0, 30, 20, 14, 60, 54, 52, 46, 42, 40, 30, 16, 12, 10, 41, 27, 21, 11, 20, 16, 10, 6
Offset: 2

Views

Author

Vladimir Shevelev, Sep 04 2014

Keywords

Comments

Conjecture: a(n) = o(prime(n)), as n goes to infinity.
If the conjecture is true, then A242719(n) ~ prime(n)^2. Indeed, A242719(n) >= prime(n)^2 + 1; on the other hand, by the conjecture, we have A242719(n)/prime(n) <= a(n) + 1 + prime(n) = prime(n)*(1+o(1)).

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 04 2014
Showing 1-4 of 4 results.