cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A242847 Numbers n for which A242719(n) > A242720(n).

Original entry on oeis.org

19, 35, 38, 41, 45, 50, 53, 56, 57, 58, 59, 63, 76, 77, 78, 79, 80, 81, 83, 84, 85, 92, 93, 95, 96, 108, 109, 112, 113, 116, 117, 124, 125, 126, 142, 143, 146, 154, 157, 173, 184, 185, 186, 193, 194, 195, 196, 197, 203, 215, 217, 224, 227, 232, 233, 237, 241
Offset: 1

Views

Author

Vladimir Shevelev, Jun 02 2014

Keywords

Comments

The sequence is infinite, in view of a strong closeness between counting functions of numbers N_1 for which lpf(N_1-3) > lpf(N_1-1) >= prime(n) and numbers N_2 for which lpf(N_2-1) > lpf(N_2-3) >= prime(n), if {N_2-3, N_2-1} is not a pair of twin primes, where p_n=prime(n) and lpf=least prime factor (A020639). (Cf., for example, A243803-A243804). This closeness is explained by a somewhat symmetry (for details, see Shevelev's link).
However, it is very interesting to find an analytical proof of infinity of this and complementory sequences.

Crossrefs

Programs

  • Mathematica
    lpf[k_] := FactorInteger[k][[1, 1]];
    a19[n_ /; n>1] := a19[n] = For[k = If[n == 2, 10, a19[n-1]], True, k = k+2, If[lpf[k-3] > lpf[k-1] >= Prime[n], Return[k]]];
    a20[n_ /; n>1] := a20[n] = For[k = If[n <= 2, 2, a20[n-1]], True, k = k+2, If[Not[PrimeQ[k-3] && PrimeQ[k-1]] && lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]];
    Select[Range[250], a19[#] > a20[#]&] (* Jean-François Alcover, Nov 06 2018 *)

Extensions

More terms from Peter J. C. Moses, Jun 02 2014

A243803 Number of numbers k in interval [(p_n)^2+1, (p_n)^4] for which lpf(k-3)>lpf(k-1)>=p_n, where p_n=prime(n) and lpf = A020639.

Original entry on oeis.org

40, 85, 393, 625, 1557, 2106, 4069, 9558, 11476, 22060, 31530, 35998, 49142, 76678, 113799, 125010, 176824, 216378, 234064, 313511, 372054, 481764, 668344, 768307, 811635, 926452, 975785, 1105924, 1751993, 1949976, 2299392, 2394921, 3130534, 3250605, 3751262, 4306910, 4683674, 5332960
Offset: 3

Views

Author

Keywords

Comments

a(n) and A243804(n) approximate each other with a small relative error.
Positions n for which a(n) < A243804(n) are 11, 13, 14, 17, 18, 19, 20 (...).

Crossrefs

A242974 Let M_n = A002110(n) (the n-th primorial), let N*(n)(N**(n), respectively) be the number of numbers k in [1, M_n] for which lpf(k-3) > lpf(k-1) >= prime(n) (lpf(k-1) > lpf(k-3) >= prime(n), respectively) such that k-3, k-1 are not twin primes, where lpf=least prime factor. Then a(n) = N*(n) - N**(n).

Original entry on oeis.org

1, 1, 3, 25, 67, 131, 1556, -1671
Offset: 3

Views

Author

Vladimir Shevelev, Jun 13 2014

Keywords

Comments

Small values of |a(n)| with respect to N*(n) + N**(n) (cf. A243867) clearly demonstrate the fact of statistical closeness of N*(n) and N**(n). See also comment in A243867.
If we don't exclude twin primes in the definition then, instead of this sequence, we would obtain -3, -14, -66, -443, -4569, -57422, -894506, -18465384, ... (cf. A000882). Thus twin primes strongly destroy the statistical closeness of N*(n) and N**(n).

Crossrefs

Programs

  • PARI
    lpf(k) = factorint(k)[1, 1];
    a(n) = {my(p=prime(n), r=1, s=2, t, u=0); for(k=4, prod(i=1, n, prime(i)), if((t=lpf(k-1))>r, if(r>=p&&(r=p, u++)); r=s; s=t); u; } \\ Jinyuan Wang, Mar 13 2020

Extensions

More terms from Peter J. C. Moses, Jun 13 2014

A243867 Sum of the numbers N*(n) and N**(n) in A242974.

Original entry on oeis.org

1, 7, 97, 1289, 20611, 365775, 7813466, 212149365
Offset: 3

Views

Author

Vladimir Shevelev, Jun 13 2014

Keywords

Crossrefs

Formula

Let B(n) be the number of twin primes pairs not exceeding the n-th primorial M_n = A002110(n). Then we know that B(n) = O(M_n/(log(M_n))^2) = o(M_n/log((p_(n-1)))^2. For sufficiently large n, a(n) + B(n) >= 0.416...*M_n/(log(prime(n-1)))^2 (cf. Shevelev link) and thus for large n, for example, we have a(n) >= 0.4*M_n/(log(prime(n-1)))^2.

Extensions

More terms from Peter J. C. Moses, Jun 13 2014
Showing 1-4 of 4 results.