cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242720 Smallest even k such that the pair {k-3,k-1} is not a twin prime pair and lpf(k-1) > lpf(k-3) >= prime(n), where lpf = least prime factor (A020639).

Original entry on oeis.org

12, 38, 80, 212, 224, 440, 440, 854, 1250, 1460, 1742, 2282, 2282, 3434, 4190, 4664, 4760, 4760, 6890, 8054, 8054, 8054, 12374, 12830, 12830, 13592, 13592, 14282, 17402, 17402, 18212, 22502, 22502, 22502, 25220, 28202, 28202, 32234, 32402, 32402, 38012
Offset: 2

Views

Author

Vladimir Shevelev, May 21 2014

Keywords

Comments

The sequence is nondecreasing. See comment in A242758.
a(n) >= prime(n)^2+3. Conjecture: a(n) <= prime(n)^4. - Vladimir Shevelev, Jun 01 2014
Conjecture. There are only a finite number of composite numbers of the form a(n)-1. Peter J. C. Moses found only two: a(16)-1 = 4189 = 59*71 and a(20)-1 = 6889 = 83^2 and no others up to a(2501). Most likely, there are no others. - Vladimir Shevelev, Jun 09 2014

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[1, 1]];
    Clear[a]; a[n_] := a[n] = For[k = If[n <= 2, 2, a[n-1]], True, k = k+2, If[Not[PrimeQ[k-3] && PrimeQ[k-1]] && lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]];
    Table[a[n], {n, 2, 50}] (* Jean-François Alcover, Nov 02 2018 *)
  • PARI
    lpf(k) = factorint(k)[1,1];
    vector(60, n, k=6; while((isprime(k-3) && isprime(k-1)) || lpf(k-1)<=lpf(k-3) || lpf(k-3)Colin Barker, Jun 01 2014

Formula

Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246821). - Vladimir Shevelev, Sep 02 2014
For n>=3, a(n) >= (prime(n)+1)^2 + 2. Equality holds for terms of A246824. - Vladimir Shevelev, Sep 04 2014