cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242727 Sum of the third largest parts of the partitions of 4n into 4 parts.

Original entry on oeis.org

1, 7, 29, 86, 198, 396, 719, 1203, 1899, 2866, 4156, 5840, 7997, 10695, 14025, 18086, 22962, 28764, 35611, 43603, 52871, 63554, 75768, 89664, 105401, 123111, 142965, 165142, 189790, 217100, 247271, 280467, 316899, 356786, 400308, 447696, 499189, 554983
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, May 21 2014

Keywords

Examples

			Add the numbers in the third column for a(n):
                                              13+ 1 + 1 + 1
                                              12+ 2 + 1 + 1
                                              11+ 3 + 1 + 1
                                              10+ 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                              11+ 2 + 2 + 1
                                              10+ 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1   10+ 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               7              29              86        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[1,7,29,86,198,396,719,1203,1899]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-6*Self(n-4)+6*Self(n-5)-3*Self(n-6)+3*Self(n-7)-3*Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    CoefficientList[Series[-(1 + 4x + 11x^2 + 17x^3 + 12x^4 + 9x^5 + 2x^6) / ((-1 + x)^5 (1 + x + x^2)^2), {x, 0, 50}], x]
    LinearRecurrence[{3, -3, 3, -6, 6, -3, 3, -3, 1}, {1, 7, 29, 86, 198, 396, 719, 1203, 1899}, 50] (* Vincenzo Librandi, Aug 29 2015 *)

Formula

G.f.: (1 + 4*x + 11*x^2 + 17*x^3 + 12*x^4 + 9*x^5 + 2*x^6) / ((1 - x)^5*(1 + x + x^2)^2).
a(n) = A238328(n) - A239667(n) - A241084(n) - A238702(n).
a(n) = 7/27*n^4 + 35/27*n^3 + 22/9*n^2 + 59/27*n + O(1). - Ralf Stephan, May 26 2014