A242740 Numbers n dividing every cyclic permutation of n^4.
1, 3, 9, 21, 27, 73, 99, 111, 271, 693, 707, 777, 819, 909, 999, 2151, 2629, 3441, 3813, 4551, 6987, 7227, 7373, 9999, 18981, 19019, 20007, 20979, 23199, 24453, 25641, 27027, 27417, 30303, 81819, 82113, 83883, 99999, 125523, 172013, 194841, 201917, 238139
Offset: 1
Examples
21 is a member as all the six cyclic permutations of 21^4 = 194481 are : {194481, 944811, 448119, 481194, 811944, 119448} and : 194481 = 21*9261; 944811 = 21*44991; 448119 = 21*21339; 811944 = 21*38664; 119448 = 21*5688.
Programs
-
Mathematica
Select[Range[300000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^4], n], {n, IntegerLength[#^4]}], #]&]
Comments