cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A262814 Numbers k dividing every cyclic permutation of k^k.

Original entry on oeis.org

1, 2, 3, 7, 9, 11, 27, 63, 99, 111, 129, 159, 231, 271, 273, 303, 333, 351, 357, 403, 457, 711, 991, 999, 1111, 1147, 1241, 2121, 2479, 4227, 4653, 5151, 5547, 5837, 6191, 6237, 6643, 6993, 7133, 8229, 8547, 8683, 8811, 8987, 9009, 9633, 9999, 11009, 13449, 13531
Offset: 1

Views

Author

Michel Lagneau, Oct 03 2015

Keywords

Comments

Conjecture: 10^n-1 is a term of the sequence for all n > 0. - Chai Wah Wu, Nov 03 2015

Examples

			7 is a member as the six cyclic permutations of 7^7 = 823543 are {823543, 382354, 438235, 543823, 354382, 235438} and these 6 integers are divisible by 7.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^#], n], {n, IntegerLength[#^#]}], #]&]
  • PARI
    isok(n) = {my(nn = n^n); for (j=1, #Str(nn)-1, cp = eval(Str(nn%10^j, nn\10^j)); if (cp % n, return (0));); return (1);} \\ Michel Marcus, Oct 11 2015
    
  • Python
    A262814_list = []
    for k in range(1,10**3):
        n = k**k
        if not n % k:
            s = str(n)
            for i in range(len(s)-1):
                s = s[1:]+s[0]
                if int(s) % k:
                    break
            else:
                A262814_list.append(k) # Chai Wah Wu, Oct 26 2015

Extensions

a(24)-a(27) from Michel Marcus, Oct 11 2015
a(28)-a(50) from Chai Wah Wu, Oct 26 2015
Showing 1-1 of 1 results.