A242775 Let b_k=3...3 consist of k>=1 3's. Then a(n) is the smallest k such that the concatenation b_k and prime(n) is prime, or a(n)=0 if there is no such prime.
0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 1, 4, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 3, 2, 1, 2, 7, 3, 1, 3, 2, 2, 8, 1, 1, 7, 2, 1, 1, 5, 3, 2, 2, 2, 3, 1, 3, 8, 5, 1, 1, 4, 3, 1, 4, 5, 3, 6, 1, 2, 1, 2, 1, 3, 1, 2, 2, 1, 3, 1, 6, 3, 1, 3, 4, 2, 3, 8, 4, 1, 3, 34, 1
Offset: 1
Keywords
Examples
For n<=3, a(n) = 0, because 3..32, 3..33 and 3..35 can never be prime, whatever the number of 3's that are concatenated. For n=4, prime(n)=7, 37 is prime. So a(4)=1.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..2000
Programs
-
PARI
a(n) = {if (n<=3, return (0)); p = prime(n); k = 1; while (! isprime(p = eval(concat("3", Str(p)))), k++); k; } \\ Michel Marcus, Sep 17 2014
Extensions
More terms from Peter J. C. Moses, Sep 14 2014
Comments