A242794 a(n) = [x^n] ( 1 + x*A(x)^n )^(n+1) / (n+1) for n>=0, with a(0)=1.
1, 1, 3, 22, 257, 3986, 75304, 1653086, 40979297, 1126004203, 33856704386, 1103686134563, 38734891315775, 1455569736467094, 58304721086789654, 2480233978808257526, 111686585878084164913, 5308774844414927594856, 265682854185812938555354, 13966882165871163036529423
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 22*x^3 + 257*x^4 + 3986*x^5 + 75304*x^6 +... Form a table of coefficients of x^k in (1 + x*A(x)^n)^(n+1) like so: n=0: [1, 1, 0, 0, 0, 0, 0, 0, ...]; n=1: [1, 2, 3, 8, 51, 564, 8539, 159226, ...]; n=2: [1, 3, 9, 34, 210, 2118, 30245, 544962, ...]; n=3: [1, 4, 18, 88, 575, 5472, 73242, 1263604, ...]; n=4: [1, 5, 30, 180, 1285, 12016, 151820, 2490390, ...]; n=5: [1, 6, 45, 320, 2520, 23916, 290162, 4518600, ...]; n=6: [1, 7, 63, 518, 4501, 44310, 527128, 7834548, ...]; n=7: [1, 8, 84, 784, 7490, 77504, 922096, 13224688, ...]; n=8: [1, 9, 108, 1128, 11790, 129168, 1561860, 21921156, ...]; ... then this sequence is formed from the main diagonal: [1/1, 2/2, 9/3, 88/4, 1285/5, 23916/6, 527128/7, 13224688/8, ...].
Crossrefs
Cf. A242795.
Programs
-
PARI
{a(n)=local(A=[1,1]);for(m=1,n,A=concat(A,0);A[m+1]=Vec((1+x*Ser(A)^m)^(m+1))[m+1]/(m+1));A[n+1]} for(n=0,25,print1(a(n),", "))
Comments