cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242816 Decimal expansion of the expected number of returns to the origin of a random walk on an 8-d lattice.

Original entry on oeis.org

1, 0, 7, 8, 6, 4, 7, 0, 1, 2, 0, 1, 6, 9, 2, 5, 5, 5, 8, 6, 4, 2, 6, 8, 4, 4, 8, 0, 0, 2, 7, 4, 1, 5, 0, 6, 1, 1, 5, 0, 3, 3, 1, 9, 9, 8, 7, 2, 3, 5, 3, 8, 3, 1, 1, 3, 2, 8, 1, 7, 8, 6, 8, 1, 8, 2, 4, 4, 0, 9, 1, 2, 7, 8, 9, 4, 4, 4, 5, 5, 9, 0, 8, 7, 4, 8, 0, 4, 8, 0, 7, 1, 6, 3, 2, 3, 1, 9, 0, 0, 7, 1, 0, 1, 9
Offset: 1

Views

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.0786470120...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 323.

Crossrefs

Programs

  • Maple
    m8:= int(exp(-t)*BesselI(0, t/8)^8, t=0..infinity):
    s:= convert(evalf(m8, 120), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    d = 8; d/Pi^d*NIntegrate[(d - Sum[Cos[t[k]], {k, 1, d}])^-1, Sequence @@ Table[{t[k], 0, Pi}, {k, 1, d}] // Evaluate] // RealDigits[#, 10, 7]& // First

Formula

m(d) = d/(2*Pi)^d*multipleIntegral(-Pi..Pi) (d-sum_(k=1..d) cos(t_k))^(-1) dt_1 dt_2 ... dt_d, where d is the lattice dimension.
m(d) = Integral_{t>0} exp(-t)*BesselI(0,t/d)^d dt where BesselI(0,x) is the zeroth modified Bessel function.
Equals 1/(1 - A086236). - Amiram Eldar, Aug 28 2020

Extensions

More terms from Alois P. Heinz, May 23 2014