cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A086231 Decimal expansion of value of Watson's integral.

Original entry on oeis.org

1, 5, 1, 6, 3, 8, 6, 0, 5, 9, 1, 5, 1, 9, 7, 8, 0, 1, 8, 1, 5, 6, 0, 1, 2, 1, 5, 9, 6, 8, 1, 4, 2, 0, 7, 7, 9, 9, 5, 5, 3, 8, 7, 0, 4, 4, 4, 5, 2, 2, 6, 2, 6, 7, 6, 5, 6, 6, 9, 8, 0, 4, 6, 3, 6, 5, 8, 0, 8, 6, 3, 2, 0, 3, 5, 3, 5, 2, 1, 4, 5, 0, 4, 0, 1, 6, 1, 1, 7, 4, 1, 2, 0, 9, 6, 8, 8, 1, 1, 3, 9, 2
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2003

Keywords

Examples

			1.51638605915197801815601215968142077995538704445226267656698...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 322.

Crossrefs

Programs

  • Magma
    C := ComplexField(); (Sqrt(3)-1)*(Gamma(1/24)*Gamma(11/24))^2/(32*Pi(C)^3); // G. C. Greubel, Jan 07 2018
  • Maple
    evalf((sqrt(3)-1)*(GAMMA(1/24)*GAMMA(11/24))^2 / (32*Pi^3),120); # Vaclav Kotesovec, Sep 16 2014
  • Mathematica
    RealDigits[ N[ Sqrt[6]/32/Pi^3*Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24], 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
  • PARI
    (sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2 / (32*Pi^3) \\ Altug Alkan, Apr 13 2016
    

Formula

Equals (sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2/(32*Pi^3). - G. C. Greubel, Jan 07 2018
Equals 1/(1 - A086230). - Amiram Eldar, Aug 28 2020
Equals Sum_{k>=0} A002896(k)/36^k. - Vaclav Kotesovec, Apr 23 2023

A086236 Decimal expansion of probability that a random walk on an 8-d lattice returns to the origin.

Original entry on oeis.org

0, 7, 2, 9, 1, 2, 6, 4, 9, 9, 5, 9, 3, 8, 3, 9, 9, 8, 4, 6, 9, 7, 4, 5, 3, 5, 5, 3, 8, 8, 3, 0, 7, 3, 6, 9, 6, 0, 1, 6, 1, 1, 8, 3, 4, 9, 1, 6, 2, 7, 1, 3, 7, 3, 1, 9, 0, 0, 0, 7, 9, 7, 9, 1, 9, 2, 7, 2, 3, 0, 6, 6, 2, 4, 4, 6, 0, 1, 4, 4, 0, 5, 5, 4, 3, 5, 9, 7
Offset: 0

Author

Eric W. Weisstein, Jul 12 2003

Keywords

Examples

			0.0729126499593839984697453553883...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 323.

Formula

Equals 1 - 1/A242816. - Amiram Eldar, Aug 28 2020

Extensions

More terms using the data at A242816 added by Amiram Eldar, Aug 28 2020

A242813 Decimal expansion of the expected number of returns to the origin of a random walk on a 5-d lattice.

Original entry on oeis.org

1, 1, 5, 6, 3, 0, 8, 1, 2, 4, 8, 4, 0, 2, 3, 1, 1, 7, 8, 7, 0, 7, 1, 3, 5, 1, 2, 1, 9, 3, 8, 5, 6, 6, 9, 8, 5, 5, 4, 5, 4, 2, 7, 3, 4, 8, 5, 0, 5, 1, 4, 2, 3, 8, 8, 2, 6, 9, 5, 6, 6, 0, 1, 1, 2, 1, 0, 0, 8, 7, 7, 0, 3, 4, 7, 0, 6, 8, 7, 3, 1, 1, 7, 2, 3, 6, 6, 5, 4, 3, 0, 4, 9, 5, 0, 9, 1, 7, 1, 6, 5, 2, 6, 7, 4, 3
Offset: 1

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.1563081248...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 323.

Programs

  • Maple
    m5:= int(exp(-t)*BesselI(0, t/5)^5, t=0..infinity):
    s:= convert(evalf(m5, 120), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    d = 5; d/Pi^d*NIntegrate[(d - Sum[Cos[t[k]], {k, 1, d}])^-1, Sequence @@ Table[{t[k], 0, Pi}, {k, 1, d}] // Evaluate] // RealDigits[#, 10, 10]& // First
  • PARI
    intnumosc(t=0,exp(-t)*besseli(0,t/5)^5,Pi*5) \\ Charles R Greathouse IV, Oct 23 2023

Formula

m(d) = d/(2*Pi)^d*multipleIntegral(-Pi..Pi) (d-sum_(k=1..d) cos(t_k))^(-1) dt_1 dt_2 ... dt_d, where d is the lattice dimension.
m(d) = integral_(t>0) exp(-t)*BesselI(0,t/d)^d dt where BesselI(0,x) is the zeroth modified Bessel function.
Equals 1/(1 - A086233). - Amiram Eldar, Aug 28 2020

Extensions

More terms from Alois P. Heinz, May 23 2014

A242815 Decimal expansion of the expected number of returns to the origin of a random walk on a 7-d lattice.

Original entry on oeis.org

1, 0, 9, 3, 9, 0, 6, 3, 1, 5, 5, 8, 7, 8, 4, 7, 9, 9, 6, 6, 8, 3, 2, 7, 1, 8, 2, 3, 5, 5, 9, 0, 1, 9, 8, 6, 3, 7, 1, 1, 2, 8, 9, 9, 7, 7, 1, 6, 4, 9, 6, 1, 1, 5, 4, 4, 9, 1, 6, 8, 9, 0, 7, 3, 8, 8, 6, 1, 2, 6, 5, 4, 5, 7, 0, 5, 0, 8, 0, 5, 2, 2, 8, 4, 4, 8, 9, 5, 1, 9, 1, 9, 7, 2, 9, 8, 5, 5, 9, 8, 7, 5, 7, 2, 9, 9
Offset: 1

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.09390631558784799668327...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 323.

Programs

  • Maple
    m7:= int(exp(-t)*BesselI(0, t/7)^7, t=0..infinity):
    s:= convert(evalf(m7, 120), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    d = 7; d/Pi^d*NIntegrate[(d - Sum[Cos[t[k]], {k, 1, d}])^-1, Sequence @@ Table[{t[k], 0, Pi}, {k, 1, d}] // Evaluate] // RealDigits[#, 10, 7]& // First

Formula

m(d) = d/(2*Pi)^d*multipleIntegral(-Pi..Pi) (d-sum_(k=1..d) cos(t_k))^(-1) dt_1 dt_2 ... dt_d, where d is the lattice dimension.
m(d) = Integral_{t>0} exp(-t)*BesselI(0,t/d)^d dt where BesselI(0,x) is the zeroth modified Bessel function.
Equals 1/(1 - A086235). - Amiram Eldar, Aug 28 2020

Extensions

More terms from Alois P. Heinz, May 23 2014

A242761 Decimal expansion of the escape probability for a random walk on the 3-D cubic lattice (a Polya random walk constant).

Original entry on oeis.org

6, 5, 9, 4, 6, 2, 6, 7, 0, 4, 4, 9, 0, 0, 0, 8, 5, 7, 1, 7, 3, 7, 2, 6, 8, 1, 5, 5, 6, 7, 0, 9, 7, 1, 0, 3, 2, 8, 9, 3, 9, 1, 7, 8, 2, 8, 7, 5, 6, 9, 7, 9, 0, 2, 2, 3, 6, 7, 6, 3, 8, 9, 4, 6, 2, 2, 2, 0, 8, 0, 3, 0, 5, 4, 1, 0, 3, 7, 6, 1, 5, 3, 5, 7, 4, 7, 1, 9, 1, 8, 1, 1, 0, 9, 4, 2, 8, 6, 9, 0
Offset: 0

Author

Jean-François Alcover, May 22 2014

Keywords

Examples

			0.6594626704490008571737268155670971...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9, p. 322.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (16*Sqrt(2/3)*Pi(R)^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)); // G. C. Greubel, Oct 26 2018
  • Mathematica
    p = (16*Sqrt[2/3]*Pi^3)/(Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]); RealDigits[p, 10, 100] // First
  • PARI
    default(realprecision, 100); (16*sqrt(2/3)*Pi^3)/(gamma(1/24)* gamma(5/24)*gamma(7/24)*gamma(11/24)) \\ G. C. Greubel, Oct 26 2018
    

Formula

Equals (16*sqrt(2/3)*Pi^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)), where Gamma is the Euler Gamma function.
Showing 1-5 of 5 results.