cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A245672 Decimal expansion of k_3 = 3/(2*Pi*m_3), a constant associated with the asymptotic expansion of the probability that a three-dimensional random walk reaches a given point for the first time, where m_3 is A086231 (Watson's integral).

Original entry on oeis.org

3, 1, 4, 8, 7, 0, 2, 3, 1, 3, 5, 9, 6, 2, 0, 1, 7, 8, 0, 7, 5, 1, 7, 3, 9, 1, 9, 4, 1, 8, 8, 0, 6, 8, 7, 7, 0, 5, 8, 9, 6, 3, 4, 2, 4, 5, 9, 0, 1, 4, 0, 5, 5, 1, 0, 8, 4, 0, 8, 0, 3, 0, 7, 2, 7, 3, 1, 0, 8, 0, 5, 9, 4, 7, 6, 1, 4, 6, 7, 3, 1, 9, 7, 9, 7, 5, 2, 0, 2, 4, 1, 2, 0, 2, 0, 4, 9, 6, 4, 0, 4, 2, 3, 4, 4
Offset: 0

Views

Author

Jean-François Alcover, Jul 29 2014

Keywords

Examples

			0.314870231359620178075173919418806877058963424590140551084080307273108...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's Random Walk Constants, p. 324.

Crossrefs

Cf. A086231.

Programs

  • Mathematica
    k3 = 8*Sqrt[6]*Pi^2/(Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]); RealDigits[k3, 10, 105] // First

Formula

k_3 = 8*sqrt(6)*Pi^2/(Gamma(5/24)*Gamma(7/24)*Gamma(11/24)), where 'Gamma' is the Euler gamma function.
Asymptotic probability ~ k_3 / ||l||, where the norm ||l|| of the position of the lattice point l tends to infinity.

A002893 a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k).

Original entry on oeis.org

1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, 1153462995, 9533639025, 79326566595, 663835030335, 5582724468093, 47152425626559, 399769750195965, 3400775573443089, 29016970072920387, 248256043372999089
Offset: 0

Views

Author

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
a(n) is the 2n-th moment of the distance from the origin of a 3-step random walk in the plane. - Peter M. W. Gill (peter.gill(AT)nott.ac.uk), Feb 27 2004
a(n) is the number of Abelian squares of length 2n over a 3-letter alphabet. - Jeffrey Shallit, Aug 17 2010
Consider 2D simple random walk on honeycomb lattice. a(n) gives number of paths of length 2n ending at origin. - Sergey Perepechko, Feb 16 2011
Row sums of A318397 the square of A008459. - Peter Bala, Mar 05 2013
Conjecture: For each n=1,2,3,... the polynomial g_n(x) = Sum_{k=0..n} binomial(n,k)^2*binomial(2k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
a(n) is the sum of the squares of the coefficients of (x + y + z)^n. - Michael Somos, Aug 25 2018
a(n) is the constant term in the expansion of (1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 28 2019

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 639*x^4 + 4653*x^5 + 35169*x^6 + ...
G.f.: A(x) = 1/(1-3*x) + 6*x^2*(1-x)/(1-3*x)^4 + 90*x^4*(1-x)^2/(1-3*x)^7 + 1680*x^6*(1-x)^3/(1-3*x)^10 + 34650*x^8*(1-x)^4/(1-3*x)^13 + ... - _Paul D. Hanna_, Feb 26 2012
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Magma
    [&+[Binomial(n, k)^2 * Binomial(2*k, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    series(1/GaussAGM(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)), x=0, 42) # Gheorghe Coserea, Aug 17 2016
    A002893 := n -> hypergeom([1/2, -n, -n], [1, 1], 4):
    seq(simplify(A002893(n)), n=0..20); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Aug 19 2011 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {1/2, -n, -n}, {1, 1}, 4]]; (* Michael Somos, Oct 16 2013 *)
    a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^3, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 30 2013 *)
    a[ n_] := If[ n < 0, 0, Block[ {x, y, z},  Expand[(x + y + z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 25 2018 *)
  • PARI
    {a(n) = if( n<0, 0, n!^2 * polcoeff( besseli(0, 2*x + O(x^(2*n+1)))^3, 2*n))};
    
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)^2 * binomial(2*k, k))}; /* Michael Somos, Jul 25 2007 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3 * x^(2*m)*(1-x)^m / (1-3*x+x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Feb 26 2012
    
  • PARI
    N = 42; x='x + O('x^N); v = Vec(1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3))); vector((#v+1)\2, k, v[2*k-1])  \\ Gheorghe Coserea, Aug 17 2016
    
  • SageMath
    def A002893(n): return simplify(hypergeometric([1/2,-n,-n], [1,1], 4))
    [A002893(n) for n in range(31)] # G. C. Greubel, Jan 21 2023

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * A000172(m). [Barrucand]
D-finite with recurrence: (n+1)^2 a(n+1) = (10*n^2+10*n+3) * a(n) - 9*n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^3. - Vladeta Jovovic, Mar 11 2003
a(n) = Sum_{p+q+r=n} (n!/(p!*q!*r!))^2 with p, q, r >= 0. - Michael Somos, Jul 25 2007
a(n) = 3*A087457(n) for n>0. - Philippe Deléham, Sep 14 2008
a(n) = hypergeom([1/2, -n, -n], [1, 1], 4). - Mark van Hoeij, Jun 02 2010
G.f.: 2*sqrt(2)/Pi/sqrt(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z))) * EllipticK(8*z^(3/2)/(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))). - Sergey Perepechko, Feb 16 2011
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1-x)^n / (1-3*x)^(3*n+1). - Paul D. Hanna, Feb 26 2012
Asymptotic: a(n) ~ 3^(2*n+3/2)/(4*Pi*n). - Vaclav Kotesovec, Sep 11 2012
G.f.: 1/(1-3*x)*(1-6*x^2*(1-x)/(Q(0)+6*x^2*(1-x))), where Q(k) = (54*x^3 - 54*x^2 + 9*x -1)*k^2 + (81*x^3 - 81*x^2 + 18*x -2)*k + 33*x^3 - 33*x^2 +9*x - 1 - 3*x^2*(1-x)*(1-3*x)^3*(k+1)^2*(3*k+4)*(3*k+5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/(2*(1-9*x)^(2/3)), where G(k) = 1 + 1/(1 - 3*(3*k+1)^2*x*(1-x)^2/(3*(3*k+1)^2*x*(1-x)^2 - (k+1)^2*(1-9*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = [x^(2n)] 1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)). - Gheorghe Coserea, Aug 17 2016
0 = +a(n)*(+a(n+1)*(+729*a(n+2) -1539*a(n+3) +243*a(n+4)) +a(n+2)*(-567*a(n+2) +1665*a(n+3) -297*a(n+4)) +a(n+3)*(-117*a(n+3) +27*a(n+4))) +a(n+1)*(+a(n+1)*(-324*a(n+2) +720*a(n+3) -117*a(n+4)) +a(n+2)*(+315*a(n+2) -1000*a(n+3) +185*a(n+4)) +a(n+3)*(+80*a(n+3) -19*a(n+4))) +a(n+2)*(+a(n+2)*(-9*a(n+2) +35*a(n+3) -7*a(n+4)) +a(n+3)*(-4*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Oct 30 2017
G.f. y=A(x) satisfies: 0 = x*(x - 1)*(9*x - 1)*y'' + (27*x^2 - 20*x + 1)*y' + 3*(3*x - 1)*y. - Gheorghe Coserea, Jul 01 2018
Sum_{k>=0} binomial(2*k,k) * a(k) / 6^(2*k) = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 3*x)*T(x) + (1 - 20*x + 27*x^2)*T'(x) + x*(-1 + x)*(-1 + 9*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = (3/64)*(1 + 3*x)*(1 - 15*x + 75*x^2 + 3*x^3);
g3 = -(1/512)*(-1 + 6*x + 3*x^2)*(1 - 12*x + 30*x^2 - 540*x^3 + 9*x^4);
which determine an elliptic surface with four singular fibers. (End)
a(n) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(3*k, 2*n) (Almkvist, p. 16). - Peter Bala, May 22 2025

A002896 Number of 2n-step polygons on cubic lattice.

Original entry on oeis.org

1, 6, 90, 1860, 44730, 1172556, 32496156, 936369720, 27770358330, 842090474940, 25989269017140, 813689707488840, 25780447171287900, 825043888527957000, 26630804377937061000, 865978374333905289360, 28342398385058078078010, 932905175625150142902300
Offset: 0

Views

Author

Keywords

Comments

Number of walks with 2n steps on the cubic lattice Z^3 beginning and ending at (0,0,0).
If A is a random matrix in USp(6) (6 X 6 complex matrices that are unitary and symplectic) then a(n) is the 2n-th moment of tr(A^k) for all k >= 7. - Andrew V. Sutherland, Mar 24 2008
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y + x*z + y + z)). - Gheorghe Coserea, Jul 14 2016
Constant term in the expansion of (x + 1/x + y + 1/y + z + 1/z)^(2n). - Harry Richman, Apr 29 2020

Examples

			1 + 6*x + 90*x^2 + 1860*x^3 + 44730*x^4 + 1172556*x^5 + 32496156*x^6 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

C(2n, n) times A002893.
Related to diagonal of rational functions: A268545-A268555.
Row k=3 of A287318.

Programs

  • Maple
    a := proc(n) local k; binomial(2*n,n)*add(binomial(n,k)^2 *binomial(2*k,k), k=0..n); end;
    # second Maple program
    a:= proc(n) option remember; `if`(n<2, 5*n+1,
          (2*(2*n-1)*(10*n^2-10*n+3) *a(n-1)
           -36*(n-1)*(2*n-1)*(2*n-3) *a(n-2)) /n^3)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 02 2012
    A002896 := n -> binomial(2*n,n)*hypergeom([1/2, -n, -n], [1, 1], 4):
    seq(simplify(A002896(n)), n=0..16); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Binomial[2n,n] Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 24 2012 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {-n, -n, 1/2}, {1, 1}, 4] Binomial[ 2 n, n]] (* Michael Somos, May 21 2013 *)
  • PARI
    a(n)=binomial(2*n,n)*sum(k=0,n,binomial(n, k)^2*binomial(2*k, k)) \\ Charles R Greathouse IV, Oct 31 2011
    
  • Sage
    def A002896():
        x, y, n = 1, 6, 1
        while True:
            yield x
            n += 1
            x, y = y, ((4*n-2)*((10*(n-1)*n+3)*y-18*(n-1)*(2*n-3)*x))//n^3
    a = A002896()
    [next(a) for i in range(17)]  # Peter Luschny, Oct 09 2013

Formula

a(n) = C(2*n, n)*Sum_{k=0..n} C(n, k)^2*C(2*k, k).
a(n) = (4^n*p(1/2, n)/n!)*hypergeom([-n, -n, 1/2], [1, 1], 4), where p(a, k) = Product_{i=0..k-1} (a+i).
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x)^3. - Corrected by Christopher J. Smyth, Oct 29 2012
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(10*n^2-10*n+3)*a(n-1) - 36*(n-1)*(2*n-1)*(2*n-3)*a(n-2). - Vladeta Jovovic, Jul 16 2004
An asymptotic formula follows immediately from an observation of Bruce Richmond and me in SIAM Review - 31 (1989, 122-125). We use Hayman's method to find the asymptotic behavior of the sum of squares of the multinomial coefficients multi(n, k_1, k_2, ..., k_m) with m fixed. From this one gets a_n ~ (3/4)*sqrt(3)*6^(2*n)/(Pi*n)^(3/2). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006
G.f.: (1/sqrt(1+12*z)) * hypergeom([1/8,3/8],[1],64/81*z*(1+sqrt(1-36*z))^2*(2+sqrt(1-36*z))^4/(1+12*z)^4) * hypergeom([1/8, 3/8],[1],64/81*z*(1-sqrt(1-36*z))^2*(2-sqrt(1-36*z))^4/(1+12*z)^4). - Sergey Perepechko, Jan 26 2011
a(n) = binomial(2*n,n)*A002893(n). - Mark van Hoeij, Oct 29 2011
G.f.: (1/2)*(10-72*x-6*(144*x^2-40*x+1)^(1/2))^(1/2)*hypergeom([1/6, 1/3],[1],54*x*(108*x^2-27*x+1+(9*x-1)*(144*x^2-40*x+1)^(1/2)))^2. - Mark van Hoeij, Nov 12 2011
PSUM transform is A174516. - Michael Somos, May 21 2013
0 = (-x^2+40*x^3-144*x^4)*y''' + (-3*x+180*x^2-864*x^3)*y'' + (-1+132*x-972*x^2)*y' + (6-108*x)*y, where y is the g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = [(x y z)^0] (x + 1/x + y + 1/y + z + 1/z)^(2*n). - Christopher J. Smyth, Sep 25 2018
a(n) = (1/Pi)^3*Integral_{0 <= x, y, z <= Pi} (2*cos(x) + 2*cos(y) + 2*cos(z))^(2*n) dx dy dz. - Peter Bala, Feb 10 2022
a(n) = Sum_{i+j+k=n, 0<=i,j,k<=n} multinomial(2n [i,i,j,j,k,k]). - Shel Kaphan, Jan 16 2023
Sum_{k>=0} a(k)/36^k = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
G.f.: HeunG(1/9,1/12,1/4,3/4,1,1/2,4*x)^2 (see Hassani et al.). - Stefano Spezia, Feb 16 2025

A086230 Decimal expansion of probability that a random walk on a 3-D lattice returns to the origin.

Original entry on oeis.org

3, 4, 0, 5, 3, 7, 3, 2, 9, 5, 5, 0, 9, 9, 9, 1, 4, 2, 8, 2, 6, 2, 7, 3, 1, 8, 4, 4, 3, 2, 9, 0, 2, 8, 9, 6, 7, 1, 0, 6, 0, 8, 2, 1, 7, 1, 2, 4, 3, 0, 2, 0, 9, 7, 7, 6, 3, 2, 3, 6, 1, 0, 5, 3, 7, 7, 7, 9, 1, 9, 6, 9, 4, 5, 8, 9, 6, 2, 3, 8, 4, 6, 4, 2, 5, 2, 8, 0, 8, 1, 8, 8, 9, 0, 5, 7, 1, 3, 0, 9, 9, 4
Offset: 0

Views

Author

Eric W. Weisstein, Jul 12 2003

Keywords

Comments

Pólya (1921) proved that this constant is < 1. McCrea and Whipple (1940) evaluated it by 0.34. - Amiram Eldar, Aug 28 2020

Examples

			0.340537329550999142826273184432902896710608217124302097763236105377791969...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 322-331.

Crossrefs

Programs

  • Magma
    C := ComplexField(); 1 - (16*Sqrt(2/3)*Pi(C)^3)/(Gamma(1/24)* Gamma(5/24)*Gamma(7/24)*Gamma(11/24)); // G. C. Greubel, Jan 25 2018
  • Mathematica
    RealDigits[1 - (16*Sqrt[2/3]*Pi^3) / (Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]), 10, 102] // First (* Jean-François Alcover, Feb 08 2013, after Eric W. Weisstein *)
  • PARI
    1-32*Pi^3/sqrt(6)/gamma(1/24)/gamma(5/24)/gamma(7/24)/gamma(11/24) \\ Charles R Greathouse IV, Jul 22 2013
    

Formula

Equals 1 - (16*Sqrt(2/3)*Pi^3)/(Gamma(1/24)* Gamma(5/24)*Gamma(7/24)* Gamma(11/24)). - G. C. Greubel, Jan 25 2018
Equals 1 - 1/A086231. - Amiram Eldar, Aug 28 2020

A242812 Decimal expansion of the expected number of returns to the origin of a random walk on a 4-d lattice.

Original entry on oeis.org

1, 2, 3, 9, 4, 6, 7, 1, 2, 1, 8, 4, 8, 4, 8, 1, 7, 1, 2, 6, 7, 8, 6, 9, 7, 6, 6, 4, 8, 5, 9, 0, 0, 0, 7, 1, 0, 1, 5, 3, 2, 8, 9, 0, 6, 9, 1, 6, 1, 7, 5, 8, 6, 5, 6, 9, 5, 3, 4, 0, 1, 8, 5, 0, 7, 1, 6, 2, 8, 1, 3, 3, 8, 6, 5, 5, 5, 6, 3, 3, 3, 1, 0, 3, 2, 3, 9, 3, 3, 0, 4, 7, 3, 5, 3, 8, 9, 3, 9, 2, 8, 5, 9, 9, 1, 8
Offset: 1

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.239467121848481712678697664859...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 323.

Programs

  • Maple
    m4:= int(exp(-t)*BesselI(0, t/4)^4, t=0..infinity):
    s:= convert(evalf(m4, 120), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    digits = 50; NIntegrate[BesselI[0, t/4]^4*Exp[-t], {t, 0, Infinity}, PrecisionGoal -> digits, WorkingPrecision -> 350] // RealDigits [#, 10, digits]& // First (* after Ryan Propper *)

Formula

m(d) = d/(2*Pi)^d*multipleIntegral(-Pi..Pi) (d-sum_(k=1..d) cos(t_k))^(-1) dt_1 dt_2 ... dt_d, where d is the lattice dimension.
m(d) = Integral_(t>0) exp(-t)*BesselI(0,t/d)^d dt where BesselI(0,x) is the zeroth modified Bessel function.
Equals 1/(1 - A086232). - Amiram Eldar, Aug 28 2020

Extensions

More terms from Alois P. Heinz, May 23 2014

A242813 Decimal expansion of the expected number of returns to the origin of a random walk on a 5-d lattice.

Original entry on oeis.org

1, 1, 5, 6, 3, 0, 8, 1, 2, 4, 8, 4, 0, 2, 3, 1, 1, 7, 8, 7, 0, 7, 1, 3, 5, 1, 2, 1, 9, 3, 8, 5, 6, 6, 9, 8, 5, 5, 4, 5, 4, 2, 7, 3, 4, 8, 5, 0, 5, 1, 4, 2, 3, 8, 8, 2, 6, 9, 5, 6, 6, 0, 1, 1, 2, 1, 0, 0, 8, 7, 7, 0, 3, 4, 7, 0, 6, 8, 7, 3, 1, 1, 7, 2, 3, 6, 6, 5, 4, 3, 0, 4, 9, 5, 0, 9, 1, 7, 1, 6, 5, 2, 6, 7, 4, 3
Offset: 1

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.1563081248...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 323.

Programs

  • Maple
    m5:= int(exp(-t)*BesselI(0, t/5)^5, t=0..infinity):
    s:= convert(evalf(m5, 120), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    d = 5; d/Pi^d*NIntegrate[(d - Sum[Cos[t[k]], {k, 1, d}])^-1, Sequence @@ Table[{t[k], 0, Pi}, {k, 1, d}] // Evaluate] // RealDigits[#, 10, 10]& // First
  • PARI
    intnumosc(t=0,exp(-t)*besseli(0,t/5)^5,Pi*5) \\ Charles R Greathouse IV, Oct 23 2023

Formula

m(d) = d/(2*Pi)^d*multipleIntegral(-Pi..Pi) (d-sum_(k=1..d) cos(t_k))^(-1) dt_1 dt_2 ... dt_d, where d is the lattice dimension.
m(d) = integral_(t>0) exp(-t)*BesselI(0,t/d)^d dt where BesselI(0,x) is the zeroth modified Bessel function.
Equals 1/(1 - A086233). - Amiram Eldar, Aug 28 2020

Extensions

More terms from Alois P. Heinz, May 23 2014

A242814 Decimal expansion of the expected number of returns to the origin of a random walk on a 6-d lattice.

Original entry on oeis.org

1, 1, 1, 6, 9, 6, 3, 3, 7, 3, 2, 2, 6, 6, 7, 1, 8, 4, 3, 6, 8, 5, 6, 4, 4, 3, 3, 1, 9, 6, 8, 6, 1, 3, 2, 5, 2, 6, 5, 6, 1, 9, 2, 6, 2, 2, 3, 9, 3, 0, 3, 2, 5, 2, 4, 6, 8, 3, 9, 9, 9, 5, 2, 9, 4, 0, 0, 4, 5, 6, 0, 7, 6, 4, 5, 4, 7, 0, 0, 8, 7, 9, 5, 2, 3, 2, 5, 0, 5, 4, 2, 8, 5, 1, 8, 3, 5, 4, 7, 7, 7, 2, 7, 5, 7, 8
Offset: 1

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.1169633732...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 323.

Programs

  • Maple
    m6:= int(exp(-t)*BesselI(0, t/6)^6, t=0..infinity):
    s:= convert(evalf(m6, 120), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    d = 6; d/Pi^d*NIntegrate[(d - Sum[Cos[t[k]], {k, 1, d}])^-1, Sequence @@ Table[{t[k], 0, Pi}, {k, 1, d}] // Evaluate] // RealDigits[#, 10, 8]& // First
  • PARI
    intnumosc(t=0,exp(-t)*besseli(0,t/6)^6,12*Pi) \\ Charles R Greathouse IV, Oct 23 2023

Formula

m(d) = d/(2*Pi)^d*multipleIntegral(-Pi..Pi) (d-sum_(k=1..d) cos(t_k))^(-1) dt_1 dt_2 ... dt_d, where d is the lattice dimension.
m(d) = integral_(t>0) exp(-t)*BesselI(0,t/d)^d dt where BesselI(0,x) is the zeroth modified Bessel function.
Equals 1/(1 - A086234). - Amiram Eldar, Aug 28 2020

Extensions

More terms from Alois P. Heinz, May 23 2014

A242816 Decimal expansion of the expected number of returns to the origin of a random walk on an 8-d lattice.

Original entry on oeis.org

1, 0, 7, 8, 6, 4, 7, 0, 1, 2, 0, 1, 6, 9, 2, 5, 5, 5, 8, 6, 4, 2, 6, 8, 4, 4, 8, 0, 0, 2, 7, 4, 1, 5, 0, 6, 1, 1, 5, 0, 3, 3, 1, 9, 9, 8, 7, 2, 3, 5, 3, 8, 3, 1, 1, 3, 2, 8, 1, 7, 8, 6, 8, 1, 8, 2, 4, 4, 0, 9, 1, 2, 7, 8, 9, 4, 4, 4, 5, 5, 9, 0, 8, 7, 4, 8, 0, 4, 8, 0, 7, 1, 6, 3, 2, 3, 1, 9, 0, 0, 7, 1, 0, 1, 9
Offset: 1

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.0786470120...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 323.

Programs

  • Maple
    m8:= int(exp(-t)*BesselI(0, t/8)^8, t=0..infinity):
    s:= convert(evalf(m8, 120), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    d = 8; d/Pi^d*NIntegrate[(d - Sum[Cos[t[k]], {k, 1, d}])^-1, Sequence @@ Table[{t[k], 0, Pi}, {k, 1, d}] // Evaluate] // RealDigits[#, 10, 7]& // First

Formula

m(d) = d/(2*Pi)^d*multipleIntegral(-Pi..Pi) (d-sum_(k=1..d) cos(t_k))^(-1) dt_1 dt_2 ... dt_d, where d is the lattice dimension.
m(d) = Integral_{t>0} exp(-t)*BesselI(0,t/d)^d dt where BesselI(0,x) is the zeroth modified Bessel function.
Equals 1/(1 - A086236). - Amiram Eldar, Aug 28 2020

Extensions

More terms from Alois P. Heinz, May 23 2014

A242815 Decimal expansion of the expected number of returns to the origin of a random walk on a 7-d lattice.

Original entry on oeis.org

1, 0, 9, 3, 9, 0, 6, 3, 1, 5, 5, 8, 7, 8, 4, 7, 9, 9, 6, 6, 8, 3, 2, 7, 1, 8, 2, 3, 5, 5, 9, 0, 1, 9, 8, 6, 3, 7, 1, 1, 2, 8, 9, 9, 7, 7, 1, 6, 4, 9, 6, 1, 1, 5, 4, 4, 9, 1, 6, 8, 9, 0, 7, 3, 8, 8, 6, 1, 2, 6, 5, 4, 5, 7, 0, 5, 0, 8, 0, 5, 2, 2, 8, 4, 4, 8, 9, 5, 1, 9, 1, 9, 7, 2, 9, 8, 5, 5, 9, 8, 7, 5, 7, 2, 9, 9
Offset: 1

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.09390631558784799668327...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 323.

Programs

  • Maple
    m7:= int(exp(-t)*BesselI(0, t/7)^7, t=0..infinity):
    s:= convert(evalf(m7, 120), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    d = 7; d/Pi^d*NIntegrate[(d - Sum[Cos[t[k]], {k, 1, d}])^-1, Sequence @@ Table[{t[k], 0, Pi}, {k, 1, d}] // Evaluate] // RealDigits[#, 10, 7]& // First

Formula

m(d) = d/(2*Pi)^d*multipleIntegral(-Pi..Pi) (d-sum_(k=1..d) cos(t_k))^(-1) dt_1 dt_2 ... dt_d, where d is the lattice dimension.
m(d) = Integral_{t>0} exp(-t)*BesselI(0,t/d)^d dt where BesselI(0,x) is the zeroth modified Bessel function.
Equals 1/(1 - A086235). - Amiram Eldar, Aug 28 2020

Extensions

More terms from Alois P. Heinz, May 23 2014

A273086 Decimal expansion of theta_3(0, exp(-sqrt(6)*Pi)), where theta_3 is the 3rd Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 0, 9, 0, 9, 9, 2, 1, 8, 8, 7, 2, 5, 6, 7, 6, 2, 9, 1, 9, 2, 8, 6, 0, 0, 4, 1, 2, 1, 5, 6, 6, 6, 7, 1, 8, 0, 4, 5, 8, 8, 1, 4, 6, 7, 3, 0, 3, 0, 1, 3, 3, 0, 8, 5, 9, 2, 4, 1, 7, 9, 6, 8, 1, 3, 9, 5, 8, 5, 4, 2, 0, 8, 7, 9, 5, 0, 0, 5, 6, 3, 3, 2, 7, 5, 4, 2, 2, 0, 2, 2, 1, 8, 2, 9, 1, 1, 4, 7, 4, 2, 1, 8
Offset: 1

Author

Vaclav Kotesovec, May 14 2016

Keywords

Examples

			1.0009099218872567629192860041215666718045881467303013308592...
		

Programs

  • Maple
    evalf(((6 + sqrt(6*(3 + 2*sqrt(2)))) * GAMMA(1/24) * GAMMA(5/24) * GAMMA(7/24) * GAMMA(11/24))^(1/4) / (2*6^(3/8)*Pi^(3/4)), 120);
    evalf((4 - sqrt(2) + sqrt(6))^(1/4) * sqrt(GAMMA(1/24)*GAMMA(11/24)) / (2^(3/2)*3^(3/8)*Pi^(3/4)), 120);
  • Mathematica
    RealDigits[EllipticTheta[3, 0, Exp[-Sqrt[6]*Pi]], 10, 105][[1]]
    RealDigits[((6 + Sqrt[6*(3 + 2*Sqrt[2])]) * Gamma[1/24] * Gamma[5/24] * Gamma[7/24] * Gamma[11/24])^(1/4) / (2*6^(3/8)*Pi^(3/4)), 10, 105][[1]]
    RealDigits[(4 - Sqrt[2] + Sqrt[6])^(1/4) * Sqrt[Gamma[1/24]*Gamma[11/24]] / (2^(3/2)*3^(3/8)*Pi^(3/4)), 10, 105][[1]]
  • PARI
    th3(x)=1 + 2*suminf(n=1,x^n^2)
    th3(exp(-sqrt(6)*Pi)) \\ Charles R Greathouse IV, Jun 06 2016

Formula

Equals ((6 + sqrt(6*(3 + 2*sqrt(2)))) * Gamma(1/24) * Gamma(5/24) * Gamma(7/24) * Gamma(11/24))^(1/4) / (2*6^(3/8)*Pi^(3/4)).
Equals (4 - sqrt(2) + sqrt(6))^(1/4) * sqrt(Gamma(1/24)*Gamma(11/24)) / (2^(3/2)*3^(3/8)*Pi^(3/4)).
Showing 1-10 of 13 results. Next