cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242819 Number T(n,k) of permutations of [n] with exactly k occurrences of the consecutive step pattern up, down, down; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/3)), read by rows.

Original entry on oeis.org

1, 1, 2, 6, 21, 3, 90, 30, 450, 270, 2619, 2322, 99, 17334, 20772, 2214, 129114, 195372, 38394, 1067661, 1958337, 591543, 11259, 9713682, 20933154, 8826246, 443718, 96393726, 238789782, 131367258, 12450834, 1036348587, 2900868876, 1989555210, 297195804, 3052323
Offset: 0

Views

Author

Alois P. Heinz, May 23 2014

Keywords

Comments

T(n,k) is also the number of permutations of [n] with exactly k occurrences of the consecutive step pattern up, up, down.
From Vaclav Kotesovec, Aug 26 2014: (Start)
Column k is asymptotic to c(k) * (3*sqrt(3)/(2*Pi))^n * n! * n^k.
Conjecture: c(k) = c(0) * (c(0)-1)^k / (3^k * k!).
Verified numerically:
c(0) = 1.96650951227123825842868... = (1+exp(Pi/sqrt(3)))*sqrt(3)/(2*Pi)
c(1) = 0.63355004986067503869384...
c(2) = 0.10205535828170995196503...
c(3) = 0.01095971939528021798...
c(4) = 0.000882722753946826148...
c(5) = 0.00005687732922585807984...
c(6) = 0.000003054026651631929902...
c(7) = 0.0000001405593242634352116...
c(8) = 0.00000000566049683079281633...
c(9) = 0.0000000002026268159682390665...
c(10)= 0.00000000000652802483581788974...
c(20)= 1.172921625090753...*10^(-28)
c(30)= 1.2959323...*10^(-47)
c(40)= 5.0751...*10^(-68)
(End)

Examples

			T(4,1) = 3: (1,4,3,2), (2,4,3,1), (3,4,2,1).
Triangle T(n,k) begins:
:  0 :       1;
:  1 :       1;
:  2 :       2;
:  3 :       6;
:  4 :      21,        3;
:  5 :      90,       30;
:  6 :     450,      270;
:  7 :    2619,     2322,      99;
:  8 :   17334,    20772,    2214;
:  9 :  129114,   195372,   38394;
: 10 : 1067661,  1958337,  591543,  11259;
: 11 : 9713682, 20933154, 8826246, 443718;
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u-j, o+j-1, [1, 3, 1][t])*`if`(t=3, x, 1), j=1..u)+
          add(b(u+j-1, o-j, 2), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..15);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Expand[Sum[b[u-j, o+j-1, {1, 3, 1}[[t]]]*If[t == 3, x, 1], {j, 1, u}] + Sum[b[u+j-1, o-j, 2], {j, 1, o}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 10 2015, after Alois P. Heinz *)