A255920 Number of primes p with p < n such that n^(p-1) == 1 (mod p^2) i.e., number of Wieferich primes to base n less than n.
0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 2, 2, 3, 0, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 0, 2, 2, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 0, 3, 1, 1, 0, 2, 0, 0, 1, 1, 2, 2, 1, 2, 0, 2, 3, 2, 1, 2, 0, 2, 1, 2, 2, 1, 1, 1, 3, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 2
Keywords
Links
- Felix Fröhlich, Table of n, a(n) for n = 2..9999
Crossrefs
Cf. A242830.
Programs
-
Mathematica
f[n_] := Block[{p = Complement[Prime@ Range@ PrimePi@ n, First /@ FactorInteger@ n]}, Select[p, Divisible[n^(# - 1) - 1, #^2] &]]; Length /@ Table[f@ n, {n, 2, 120}] (* Michael De Vlieger, Sep 24 2015 *)
-
PARI
for(n=2, 120, i=0; forprime(p=1, n, if(Mod(n, p^2)^(p-1)==1, i++)); print1(i, ", "))
Comments