cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242863 Absolute discriminants of complex quadratic fields with 3-class group of elementary abelian type (3,3) of rank 2.

Original entry on oeis.org

3896, 4027, 6583, 8751, 9748, 12067, 12131, 15544, 16627, 17131, 18555, 19187, 19651, 20276, 20568, 21224, 21668, 22395, 22443, 22711, 23428, 23683, 24340, 24884, 24904, 25447, 26139, 26760, 27156, 27355, 27640
Offset: 1

Views

Author

Keywords

Comments

This is the best studied subsequence of A242862. For all these discriminants, the metabelianization of the 3-tower group is known. For two extensive subsequences the 3-class tower has exact length 2, resp. 3.

Examples

			The exact length of the 3-class field tower is 2 for n=2,4,7, and 3 for n=5,8,9.
		

References

  • F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.
  • B. Nebelung, Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Univ. zu Köln, 1989.

Crossrefs

Cf. A242862 (supersequence with arbitrary 3-class rank 2).

Programs

  • Magma
    for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if ([3,3] eq pPrimaryInvariants(C,3)) then d, ", "; end if; end if; end for;