A242878
Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and Hilbert 3-class field tower of exact length 3, except for the cases mentioned in the COMMENTS.
Original entry on oeis.org
9748, 15544, 16627, 17131, 18555, 21668, 22395, 22443, 23683, 24884, 27640, 28279, 31271, 34027, 34867, 35539, 37988, 39736, 42619, 42859, 43847, 45887, 48472, 48667, 50983, 51348, 53843, 54319, 58920, 60196, 60895
Offset: 1
The case 9748 (n=1) was discussed very thoroughly by Scholz and Taussky in 1934. However, this is the famous case where they erroneously claimed that the 3-tower has exactly two stages. Brink and Gold had doubts about this claim but were unable to exclude it definitely in 1987. Bush and Mayer were the first who succeeded in disproving this claim rigorously in 2012.
- J. R. Brink and R. Gold, Class field towers of imaginary quadratic fields, manuscripta math. 57 (1987), 425-450.
- M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, arXiv:1312.0251 [math.NT], J. Number Theory, accepted for publication, 2014
- A. Scholz and O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper, J. Reine Angew. Math. 171 (1934), 19-41.
-
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; p := 0; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else p := p+1; end if; end for; if (1 eq p) and ((0 eq e) or (1 eq e)) then d, ", "; end if; end if; end if; end for;
A242873
Absolute discriminants of complex quadratic fields with 3-class group of type (3,3), 3-principalization type (4443), IPAD [(3,3,3)^3, (3,9)], and Hilbert 3-class field tower of unknown length at least 3.
Original entry on oeis.org
3896, 6583, 23428, 25447, 27355, 27991, 36276, 37219, 37540, 39819, 41063
Offset: 1
Already the smallest term 3896 resists all attempts to determine the length of its Hilbert 3-class field tower.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
- L. Bartholdi and M. R. Bush, Maximal unramified 3-extensions of imaginary quadratic fields and SL_2Z_3, J. Number Theory 124 (2007), 159-166.
- N. Boston, M. R. Bush, F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, arXiv:1111.4679 [math.NT], 2011.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014.
-
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C,mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (3 eq e) then d, ", "; end if; end if; end if; end for;
A242864
Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and Hilbert 3-class field tower of exact length 2.
Original entry on oeis.org
4027, 8751, 12131, 19187, 19651, 20276, 20568, 21224, 22711, 24340, 24904, 26139, 26760, 28031, 28759, 31639, 31999, 32968, 34088, 34507, 35367, 36807, 40299, 40692, 41015, 41583, 41671, 42423, 43192, 43307, 44004
Offset: 1
- Laurent Bartholdi and Michael R. Bush, Maximal unramified 3-extensions of imaginary quadratic fields and SL_2Z_3, J. Number Theory, 124 (2007), 159-166.
- N. Boston, M. R. Bush, F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Math. Ann. (2013), Preprint: arXiv:1111.4679v1 [math.NT], 2011.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
- D. C. Mayer, Principalization algorithm via class group structure, J. Théor. Nombres Bordeaux (2014), Preprint: arXiv:1403.3839v1 [math.NT], 2014.
- A. Scholz and O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper, J. Reine Angew. Math. 171 (1934), 19-41.
-
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C,mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q,mQ := quo: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA,sN,sF,sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO,3)) then if ([3,3,3] eq pPrimaryInvariants(CO,3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and ((1 eq e) or (2 eq e)) then d,","; end if; end if; end if; end for;
A247692
Minimal absolute discriminants a(n) of complex quadratic fields with 3-class group of type (3,3), 3-principalization type E.6 (1122), and second 3-class group G of odd nilpotency class cl(G)=2(n+2)+1.
Original entry on oeis.org
15544, 268040, 1062708, 27629107
Offset: 0
For a(0)=15544, we have the ground state of TKT E.6 with TTT [(9,27),(3,3,3),(3,9)^2] and cl(G)=5.
For a(1)=268040, we have the first excited state of TKT E.6 with TTT [(27,81),(3,3,3),(3,9)^2] and cl(G)=7.
a(0) and a(1) are due to D. C. Mayer (2012).
a(2) and a(3) are due to N. Boston, M. R. Bush and F. Hajir (2013).
- N. Boston, M. R. Bush, F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Math. Ann. (2013), Preprint: arXiv:1111.4679v1 [math.NT], 2011.
- M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, J. Number Theory (2014), Preprint: arXiv:1312.0251v1 [math.NT], 2013.
- D. C. Mayer, The second p-class group of a number field, arXiv:1403.3899 [math.NT], 2014; Int. J. Number Theory 8 (2012), no. 2, 471-505.
- D. C. Mayer, Transfers of metabelian p-groups, arXiv:1403.3896 [math.GR], 2014; Monatsh. Math. 166 (3-4) (2012), 467-495.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014; J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
- D. C. Mayer, Principalization algorithm via class group structure, J. Théor. Nombres Bordeaux (2014), Preprint: arXiv:1403.3839v1 [math.NT], 2014.
- Daniel C. Mayer, Periodic sequences of p-class tower groups, arXiv:1504.00851, 2015.
- Wikipedia, Artin transfer (group theory), Table 2
A247693
Minimal absolute discriminants a(n) of complex quadratic fields with 3-class group of type (3,3), 3-principalization type E.14 (3122), and second 3-class group G of odd nilpotency class cl(G)=2(n+2)+1.
Original entry on oeis.org
16627, 262744, 4776071, 40059363
Offset: 0
For a(0)=16627, we have the ground state of TKT E.14 with TTT [(9,27),(3,3,3),(3,9)^2] and cl(G)=5.
For a(1)=262744, we have the first excited state of TKT E.14 with TTT [(27,81),(3,3,3),(3,9)^2] and cl(G)=7.
a(0) and a(1) are due to D. C. Mayer (2012).
a(2) and a(3) are due to N. Boston, M. R. Bush and F. Hajir (2013).
- N. Boston, M. R. Bush, and F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Math. Ann. (2013), Preprint: arXiv:1111.4679v1 [math.NT], 2011.
- M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, J. Number Theory (2014), Preprint: arXiv:1312.0251v1 [math.NT], 2013.
- D. C. Mayer, The second p-class group of a number field, arXiv:1403.3899 [math.NT], 2014; Int. J. Number Theory 8 (2012), no. 2, 471-505.
- D. C. Mayer, Transfers of metabelian p-groups, arXiv:1403.3896 [math.GR], 2014; Monatsh. Math. 166 (3-4) (2012), 467-495.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014; J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
- D. C. Mayer, Principalization algorithm via class group structure, J. Théor. Nombres Bordeaux (2014), Preprint: arXiv:1403.3839v1 [math.NT], 2014.
- D. C. Mayer, Periodic sequences of p-class tower groups, arXiv:1504.00851 [math.NT], 2015.
- Wikipedia, Artin transfer (group theory), Table 2
A247694
Minimal absolute discriminants a(n) of complex quadratic fields with 3-class group of type (3,3), 3-principalization type H.4 (2122), second 3-class group G of even nilpotency class cl(G)=2(n+3), and 3-class tower of unknown length at least 3.
Original entry on oeis.org
21668, 446788, 3843907, 52505588
Offset: 0
For a(0)=21668, we have the ground state of TKT H.4 with TTT [(9,27),(3,3,3),(3,9)^2] and cl(G)=6.
For a(1)=446788, we have the first excited state of TKT H.4 with TTT [(27,81),(3,3,3),(3,9)^2] and cl(G)=8.
a(0) and a(1) are due to D. C. Mayer (2012).
a(2) and a(3) are due to N. Boston, M. R. Bush and F. Hajir (2013).
- J. R. Brink, The class field tower for imaginary quadratic number fields of type (3,3), Dissertation, The Ohio State University, 1984.
- D. C. Mayer, Principalization in complex S_3 fields, Congressus Numerantium 80 (1991), 73-87. (Proceedings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing, The University of Manitoba, Winnipeg, Manitoba, Canada, 1990.)
- N. Boston, M. R. Bush and F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Preprint: arXiv:1111.4679v1 [math.NT], 2011, Math. Ann. (2013).
- M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, Preprint: arXiv:1312.0251v1 [math.NT], 2013.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2) (2012), 471-505.
- D. C. Mayer, The second p-class group of a number field
- D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. 166 (3-4) (2012), 467-495.
- D. C. Mayer, Transfers of metabelian p-groups, arXiv:1403.3896 [math.GR], 2014.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014.
- D. C. Mayer, Principalization algorithm via class group structure, Preprint: arXiv:1403.3839v1 [math.NT], 2014.
- Daniel C. Mayer, Periodic sequences of p-class tower groups, arXiv:1504.00851 [math.NT], 2015.
- Wikipedia, Artin transfer (group theory), Table 2
A247695
Minimal absolute discriminants a(n) of complex quadratic fields with 3-class group of type (3,3), 3-principalization type E.8 (2234), and second 3-class group G of odd nilpotency class cl(G)=2(n+2)+1.
Original entry on oeis.org
34867, 370740, 4087295, 19027947
Offset: 0
For a(0)=34867, we have the ground state of TKT E.8 with TTT [(3,9),(9,27),(3,9)^2] and cl(G)=5.
For a(1)=370740, we have the first excited state of TKT E.8 with TTT [(3,9),(27,81),(3,9)^2] and cl(G)=7.
a(0) and a(1) are due to D. C. Mayer (2012).
a(2) and a(3) are due to N. Boston, M. R. Bush and F. Hajir (2013).
- N. Boston, M. R. Bush and F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Preprint: arXiv:1111.4679v1 [math.NT], 2011, Math. Ann. (2013).
- M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, Preprint: arXiv:1312.0251v1 [math.NT], 2013.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2) (2012), 471-505.
- D. C. Mayer, The second p-class group of a number field, arXiv:1403.3899 [math.NT], 2014.
- D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. 166 (3-4) (2012), 467-495.
- D. C. Mayer, Transfers of metabelian p-groups, arXiv:1403.3896 [math.GR], 2014.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014.
- D. C. Mayer, Principalization algorithm via class group structure, Preprint: arXiv:1403.3839v1 [math.NT], 2014.
- Daniel C. Mayer, Periodic sequences of p-class tower groups, arXiv:1504.00851 [math.NT], 2015.
- Wikipedia, Artin transfer (group theory), Table 2
A247696
Minimal absolute discriminants a(n) of complex quadratic fields with 3-class group of type (3,3), 3-principalization type E.9 (2334), and second 3-class group G of odd nilpotency class cl(G)=2(n+2)+1.
Original entry on oeis.org
9748, 297079, 1088808, 11091140, 94880548
Offset: 0
For a(0)=9748, we have the ground state of TKT E.9 with TTT [(3,9),(9,27),(3,9)^2] and cl(G)=5.
For a(1)=297079, we have the first excited state of TKT E.9 with TTT [(3,9),(27,81),(3,9)^2] and cl(G)=7.
For a(2)=1088808, we have the second excited state of TKT E.9 with TTT [(3,9),(81,243),(3,9)^2] and cl(G)=9.
For a(3)=11091140, we have the third excited state of TKT E.9 with TTT [(3,9),(243,729),(3,9)^2] and cl(G)=11.
For a(4)=94880548, we have the fourth excited state of TKT E.9 with TTT [(3,9),(729,2187),(3,9)^2] and cl(G)=13.
a(0) and a(1) are due to D. C. Mayer (2012).
a(2), a(3) and a(4) are due to N. Boston, M. R. Bush and F. Hajir (2013).
- N. Boston, M. R. Bush, and F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Math. Ann. (2013), Preprint: arXiv:1111.4679v1 [math.NT], 2011.
- M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, J. Number Theory (2014), Preprint: arXiv:1312.0251v1 [math.NT], 2013.
- D. C. Mayer, The second p-class group of a number field, arXiv:1403.3899 [math.NT], 2014; Int. J. Number Theory 8 (2012), no. 2, 471-505.
- D. C. Mayer, Transfers of metabelian p-groups, arXiv:1403.3896 [math.GR], 2014; Monatsh. Math. 166 (3-4) (2012), 467-495.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014; J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
- D. C. Mayer, Principalization algorithm via class group structure, J. Théor. Nombres Bordeaux (2014), Preprint: arXiv:1403.3839v1 [math.NT], 2014.
- D. C. Mayer, Periodic sequences of p-class tower groups, arXiv:1504.00851 [math.NT], 2015.
- Wikipedia, Artin transfer (group theory), Table 2
A247697
Minimal absolute discriminants a(n) of complex quadratic fields with 3-class group of type (3,3), 3-principalization type G.16 (2134), second 3-class group G of even nilpotency class cl(G)=2(n+3), and 3-class tower of unknown length at least 3.
Original entry on oeis.org
17131, 819743, 2244399, 30224744
Offset: 0
For a(0)=17131, we have the ground state of TKT G.16 with TTT [(3,9),(9,27),(3,9)^2] and cl(G)=6.
For a(1)=819743, we have the first excited state of TKT G.16 with TTT [(3,9),(27,81),(3,9)^2] and cl(G)=8.
a(0) and a(1) are due to D. C. Mayer (2012).
a(2) and a(3) are due to N. Boston, M. R. Bush and F. Hajir (2013).
- N. Boston, M. R. Bush and F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Preprint: arXiv:1111.4679v1 [math.NT], 2011; Math. Ann. (2013).
- M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, Preprint: arXiv:1312.0251v1 [math.NT], 2013.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2) (2012), 471-505.
- D. C. Mayer, The second p-class group of a number field, arXiv:1403.3899 [math.NT], 2014.
- D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. 166 (3-4) (2012), 467-495.
- D. C. Mayer, Transfers of metabelian p-groups, arXiv:1403.3896 [math.GR], 2014.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014.
- D. C. Mayer, Principalization algorithm via class group structure, Preprint: arXiv:1403.3839v1 [math.NT], 2014.
- Daniel C. Mayer, Periodic sequences of p-class tower groups, arXiv:1504.00851 [math.NT], 2015.
- Wikipedia, Artin transfer (group theory), Table 2
A247688
Absolute discriminants of complex quadratic fields with 3-class group of type (3,3), 3-principalization type (2143), IPAD [(3,9)^4], and Hilbert 3-class field tower of unknown length at least 3.
Original entry on oeis.org
12067, 49924, 54195, 60099, 83395, 86551, 91643, 93067, 96551
Offset: 1
Already the smallest term 12067 resists all attempts to determine the length of its Hilbert 3-class field tower.
- F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
-
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (0 eq e) then d, ", "; end if; end if; end if; end for;
Showing 1-10 of 17 results.
Comments