A242878 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and Hilbert 3-class field tower of exact length 3, except for the cases mentioned in the COMMENTS.
9748, 15544, 16627, 17131, 18555, 21668, 22395, 22443, 23683, 24884, 27640, 28279, 31271, 34027, 34867, 35539, 37988, 39736, 42619, 42859, 43847, 45887, 48472, 48667, 50983, 51348, 53843, 54319, 58920, 60196, 60895
Offset: 1
Examples
The case 9748 (n=1) was discussed very thoroughly by Scholz and Taussky in 1934. However, this is the famous case where they erroneously claimed that the 3-tower has exactly two stages. Brink and Gold had doubts about this claim but were unable to exclude it definitely in 1987. Bush and Mayer were the first who succeeded in disproving this claim rigorously in 2012.
Links
- J. R. Brink and R. Gold, Class field towers of imaginary quadratic fields, manuscripta math. 57 (1987), 425-450.
- M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, arXiv:1312.0251 [math.NT], J. Number Theory, accepted for publication, 2014
- A. Scholz and O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper, J. Reine Angew. Math. 171 (1934), 19-41.
Programs
-
Magma
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo
: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; p := 0; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else p := p+1; end if; end for; if (1 eq p) and ((0 eq e) or (1 eq e)) then d, ", "; end if; end if; end if; end for;
Comments