cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242864 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and Hilbert 3-class field tower of exact length 2.

Original entry on oeis.org

4027, 8751, 12131, 19187, 19651, 20276, 20568, 21224, 22711, 24340, 24904, 26139, 26760, 28031, 28759, 31639, 31999, 32968, 34088, 34507, 35367, 36807, 40299, 40692, 41015, 41583, 41671, 42423, 43192, 43307, 44004
Offset: 1

Views

Author

Keywords

Comments

For all these discriminants, the metabelianization of the 3-tower group is one of the two Schur sigma-groups SmallGroup(243, 5) or SmallGroup(243, 7), whence it is clear that the tower must terminate at the second stage.
n = 1 is discussed very thoroughly by Scholz and Taussky.
These fields are characterized either by their 3-principalization types (transfer kernel types, TKTs) (2241), D.10, resp. (4224), D.5, or equivalently by their transfer target types (TTTs) [(3,3,3), (3,9)^3], resp. [(3,3,3)^2, (3,9)^2] (called IPADs by Boston, Bush, Hajir). The latter are used in the MAGMA PROG, which essentially constitutes the principalization algorithm via class group structure. - Daniel Constantin Mayer, Sep 23 2014

Crossrefs

Cf. A242862, A242863 (supersequences), A247689, A247690 (subsequences), and A242873, A242878 (disjoint sequences).

Programs

  • Magma
    for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C,mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q,mQ := quo: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA,sN,sF,sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO,3)) then if ([3,3,3] eq pPrimaryInvariants(CO,3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and ((1 eq e) or (2 eq e)) then d,","; end if; end if; end if; end for;