A242864 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and Hilbert 3-class field tower of exact length 2.
4027, 8751, 12131, 19187, 19651, 20276, 20568, 21224, 22711, 24340, 24904, 26139, 26760, 28031, 28759, 31639, 31999, 32968, 34088, 34507, 35367, 36807, 40299, 40692, 41015, 41583, 41671, 42423, 43192, 43307, 44004
Offset: 1
Links
- Laurent Bartholdi and Michael R. Bush, Maximal unramified 3-extensions of imaginary quadratic fields and SL_2Z_3, J. Number Theory, 124 (2007), 159-166.
- N. Boston, M. R. Bush, F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Math. Ann. (2013), Preprint: arXiv:1111.4679v1 [math.NT], 2011.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
- D. C. Mayer, Principalization algorithm via class group structure, J. Théor. Nombres Bordeaux (2014), Preprint: arXiv:1403.3839v1 [math.NT], 2014.
- A. Scholz and O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper, J. Reine Angew. Math. 171 (1934), 19-41.
Crossrefs
Programs
-
Magma
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C,mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q,mQ := quo
: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA,sN,sF,sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO,3)) then if ([3,3,3] eq pPrimaryInvariants(CO,3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and ((1 eq e) or (2 eq e)) then d,","; end if; end if; end if; end for;
Comments