A242865 Numbers n such that 3^(n - 3) is congruent to 1 modulo n.
3, 9299, 31903, 50963, 87043, 115918, 116891, 219827, 241043, 394243, 550243, 617503, 760243, 806623, 1029253, 1050787, 1458083, 1642798, 1899458, 2864755, 3205387, 3588115, 3839363, 4164578, 5041223, 5610583, 5834755, 5977555, 7837903, 8005558, 8067433, 8128823, 9007603, 9298903, 9449113, 9617443, 9835843
Offset: 1
Keywords
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..372 (terms 1..163 from Felix Fröhlich)
Programs
-
Mathematica
Select[Range[10^4], Mod[3^(# - 3), #] == 1 &] (* Alonso del Arte, May 27 2014 *)
-
PARI
for(n=3, 10^6, if(Mod(3, n)^(n-3)==1, print1(n, ", ")))