cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276671 Positive integers k such that 3^k == 2 (mod k).

Original entry on oeis.org

1, 2929, 9742277641, 23341869101, 15092205901438895, 16311037042239935
Offset: 1

Views

Author

Max Alekseyev, Oct 05 2016

Keywords

Comments

No other terms below 2*10^16. A larger term: 31744873758348589012852097851.

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[10000], PowerMod[3, #, #] == 2 &]] (* Alonso del Arte, Oct 11 2016 *)
  • PARI
    isok(n) = Mod(3, n)^n == Mod(2, n); \\ Dmitry Ezhov, Sep 28 2016

Extensions

Order of terms corrected by Felix Fröhlich, Oct 06 2016
a(5)-a(6) from Sergey Paramonov, Oct 03 2021

A277344 3-Knödel numbers (A033553) that are not divisible by 3.

Original entry on oeis.org

50963, 5834755, 9835843, 155627923, 245056003, 332852435, 556268443, 724014203, 795650963, 831912763, 2440444163, 4080848203, 5067702643, 5140068643, 5555216803, 7461332483, 8438160643, 11766788323, 11951765003, 13058213003, 13483943203, 14528402983, 16644521435, 17847852803
Offset: 1

Views

Author

Max Alekseyev, Oct 09 2016

Keywords

Crossrefs

Intersection of A033553 and A242865.
Intersection of A033553 and A130133.
Subsequence of A015922.

A346988 a(n) is the smallest k > n such that n^(k-n) == 1 (mod k).

Original entry on oeis.org

2, 20737, 9299, 7, 13, 311, 15, 127, 17, 37, 14, 23, 17, 157, 106, 31, 29, 312953, 45, 95951, 41, 91, 33, 47, 28, 95, 35, 271, 35, 9629, 39, 311, 85, 397, 46, 71, 43, 1793, 95, 79, 61, 821, 51, 18881, 67, 103, 51, 12409, 73, 409969, 65, 87, 65, 71233, 63, 155, 65, 69, 87, 1962251, 91, 2443783, 155
Offset: 1

Views

Author

Thomas Ordowski, Aug 10 2021

Keywords

Comments

Smallest k > n coprime to n such that n^k == n^n (mod k).
If a(n) is a prime p, then n^(n-1) == 1 (mod p).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = n + 1}, While[PowerMod[n, k - n, k] != 1, k++]; k]; Array[a, 60] (* Amiram Eldar, Aug 10 2021 *)
  • PARI
    a(n) = my(k=n+1); while (Mod(n, k)^(k-n) != 1, k++); k; \\ Michel Marcus, Aug 10 2021
    
  • Python
    def A346988(n):
        k, kn = n+1, 1
        while True:
            if pow(n,kn,k) == 1:
                return k
            k += 1
            kn += 1 # Chai Wah Wu, Aug 28 2021

Extensions

More terms from Amiram Eldar, Aug 10 2021
Showing 1-3 of 3 results.