cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A015973 Positive integers n such that n | (3^n + 2).

Original entry on oeis.org

1, 5, 77, 278377, 3697489, 219596687717, 56865169816619
Offset: 1

Views

Author

Keywords

Comments

No other terms below 10^15. Some larger term: 3142423971953435020522506484187. - Max Alekseyev, Aug 04 2011

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), this sequence (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), A277274 (k=11).

Extensions

a(1)=1 prepended and a(6)-a(7) added by Max Alekseyev, Aug 04 2011

A116622 Positive integers n such that 13^n == 2 (mod n).

Original entry on oeis.org

1, 11, 140711, 863101, 1856455, 115602923, 566411084209, 706836043419179
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

No other terms below 10^16. - Max Alekseyev, Nov 02 2018

Crossrefs

Cf. A116609.
Solutions to b^n == 2 (mod n): A015919 (b=2), A276671 (b=3), A130421 (b=4), A124246 (b=5), A277401 (b=7), this sequence (b=13), A333269 (b=17).
Solutions to 13^n == k (mod n): A015963 (k=-1), A116621 (k=1), this sequence (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620 (k=10), A116638 (k=11), A116639 (k=15).

Programs

  • Mathematica
    Select[Range[1, 500000], Mod[13^#, #] == 2 &] (* G. C. Greubel, Nov 19 2017 *)
    Join[{1}, Select[Range[5000000], PowerMod[13, #, #] == 2 &]] (* Robert Price, Apr 10 2020 *)
  • PARI
    isok(n) = Mod(13, n)^n == 2; \\ Michel Marcus, Nov 19 2017

Extensions

One more term from Ryan Propper, Jun 11 2006
Term a(1)=1 is prepended and a(7)-a(8) are added by Max Alekseyev, Jun 29 2011

A276740 Numbers n such that 3^n == 5 (mod n).

Original entry on oeis.org

1, 2, 4, 76, 418, 1102, 4687, 7637, 139183, 2543923, 1614895738, 9083990938, 23149317409, 497240757797, 4447730232523, 16000967516764, 65262766108619, 141644055557882
Offset: 1

Views

Author

Dmitry Ezhov, Sep 16 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 194995887252090239, 2185052151122686482926861593785262. - Max Alekseyev, Oct 13 2016

Examples

			3 == 5 (mod 1), so 1 is a term;
9 == 5 (mod 2), so 2 is a term.
		

Crossrefs

Cf. A066601.
Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), this sequence (k=5), A277628 (k=6), A277126 (k=7), A277630 (k=8), A277274 (k=11).

Programs

  • Mathematica
    Select[Range[10^7], PowerMod[3, #, #] == Mod[5, #] &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    isok(n) = Mod(3, n)^n == Mod(5, n); \\ Michel Marcus, Sep 17 2016
    
  • Python
    A276740_list = [1,2,4]+[n for n in range(5,10**6) if pow(3,n,n) == 5] # Chai Wah Wu, Oct 04 2016

Extensions

a(11)-a(13) from Chai Wah Wu, Oct 05 2016
a(14) from Lars Blomberg, Oct 12 2016
a(15)-a(18) from Max Alekseyev, Oct 13 2016
a(12) was missing Robert G. Wilson v, Oct 19 2016

A277126 Positive integers n such that 3^n == 7 (mod n).

Original entry on oeis.org

1, 2, 295, 883438, 252027511, 7469046275, 26782373099, 53191768475, 55246802458, 819613658855, 893727887879978
Offset: 1

Views

Author

Seiichi Manyama, Oct 06 2016

Keywords

Comments

No other terms below 10^15. A larger term: 9135884036634915191945452485106476242. - Max Alekseyev, Oct 12 2016
Terms are not divisible by 127 (Alekseyev 2016).

Examples

			3 == 7 mod 1, so 1 is a term;
9 == 7 mod 2, so 2 is a term.
		

References

  • M. A. Alekseyev. "Problem 4101". Crux Mathematicorum 42:1 (2016), 28.

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), this sequence (k=7), A277274 (k=11).

Programs

Extensions

a(5) from Joerg Arndt, Oct 06 2016
a(6)-a(11) from Max Alekseyev, Oct 12 2016

A277288 Positive integers k such that k divides 3^k + 5.

Original entry on oeis.org

1, 2, 14, 1978, 38209, 4782974, 9581014, 244330711, 365496202, 1661392258, 116084432414, 288504187458218, 490179448388654, 802245996685561
Offset: 1

Views

Author

Seiichi Manyama, Oct 09 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 79854828136468902206, 3518556634988844968631084847788071912030455376274045370172567094578. - Max Alekseyev, Oct 14 2016

Examples

			3^14 + 5 = 4782974 = 14 * 341641, so 14 is a term.
		

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), this sequence (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), A277274 (k=11).

Programs

  • PARI
    is(n)=Mod(3,n)^n==-5; \\ Joerg Arndt, Oct 09 2016
    
  • Python
    A277288_list = [1,2]+[n for n in range(3,10**6) if pow(3,n,n)==n-5] # Chai Wah Wu, Oct 09 2016
    
  • Sage
    def A277288_list(search_limit):
        n, t, r = 1, Integer(3), [1]
        while n < search_limit:
            n += 1
            t *= 3
            if n.divides(t+5): r.append(n)
        return r # Peter Luschny, Oct 10 2016

Extensions

a(9) from Joerg Arndt, Oct 09 2016
a(10) from Chai Wah Wu, Oct 09 2016
a(11)-a(14) from Max Alekseyev, Oct 14 2016

A277289 Positive integers n such that n | (3^n + 7).

Original entry on oeis.org

1, 2, 4, 5, 8, 25, 44, 4664, 6568, 1353025, 2919526, 5709589, 7827725, 64661225, 85132756, 153872408, 743947534, 34304296003, 38832409867, 40263727492, 1946603375348, 2469908330348, 64471909888247, 274267749806485, 888906849689897, 896501949422459
Offset: 1

Views

Author

Seiichi Manyama, Oct 09 2016

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Oct 14 2016
492385451091805616444 is a term.

Examples

			3^25 + 7 = 847288609450 = 25 * 33891544378, so 25 is a term.
		

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), this sequence (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), A277274 (k=11).

Programs

  • PARI
    is(n)=Mod(3,n)^n==-7; \\ Joerg Arndt, Oct 09 2016
    
  • Python
    A277289_list = [1,2,4,5]+[n for n in range(6,10**6) if pow(3,n,n)==n-7] # Chai Wah Wu, Oct 12 2016

Extensions

a(17) from Joerg Arndt, Oct 09 2016
a(18)-a(20) from Chai Wah Wu, Oct 12 2016
a(21)-a(26) from Max Alekseyev, Oct 14 2016

A277274 Positive integers n such that 3^n == 11 (mod n).

Original entry on oeis.org

1, 2, 1162, 1692934, 3851999, 274422823, 14543645261, 492230729674, 773046873382, 13010754158393, 31446154470014, 583396812890467, 598371102650063
Offset: 1

Views

Author

Seiichi Manyama, Oct 08 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 38726095838775708310162, 2682806839696008709567739369. - Max Alekseyev, Oct 12 2016

Examples

			3 == 11 mod 1, so 1 is a term.
9 == 11 mod 2, so 2 is a term.
		

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), this sequence (k=11).

Programs

  • Mathematica
    k = 3; lst = {1, 2}; While[k < 12000000001, If[ PowerMod[3, k, k] == 11, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Oct 08 2016 *)

Extensions

a(7)-a(13) from Max Alekseyev, Oct 12 2016

A277340 Positive integers n such that n | (3^n + 11).

Original entry on oeis.org

1, 2, 4, 7, 10, 92, 1099, 29530, 281473, 657892, 3313964, 9816013, 18669155396, 94849225930, 358676424226, 957439868543, 1586504109310, 41431374800470, 241469610359708, 256165266592379
Offset: 1

Views

Author

Seiichi Manyama, Oct 09 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 9151612250553176993, 1401778935853533028413047652833, 5645122353966835994338815444821661584288016927879134, 313*(3^626+11)/6562567821545333606830 (280 digits). - Max Alekseyev, Oct 14 2016

Examples

			3^10 + 11 = 59060 = 10 * 5906, so 10 is a term.
		

Crossrefs

Solutions to 3^n == k (mod n): this sequence (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), A277274 (k=11).

Programs

  • PARI
    is(n)=Mod(3,n)^n==-11; \\ Joerg Arndt, Oct 10 2016
    
  • Python
    A277340_list = [1,2,4,7,10]+[n for n in range(11,10**6) if pow(3,n,n)==n-11] # Chai Wah Wu, Oct 11 2016

Extensions

a(13)-a(14) from Chai Wah Wu, Oct 12 2016
a(15)-a(20) from Max Alekseyev, Oct 14 2016

A277401 Positive integers n such that 7^n == 2 (mod n).

Original entry on oeis.org

1, 5, 143, 1133, 2171, 8567, 16805, 208091, 1887043, 517295383, 878436591673
Offset: 1

Views

Author

Seiichi Manyama, Oct 13 2016

Keywords

Comments

All terms are odd.
No other terms below 10^15. Some larger terms: 181204957971619289, 21305718571846184078167, 157*(7^157-2)/1355 (132 digits). - Max Alekseyev, Oct 18 2016

Examples

			7 == 2 mod 1, so 1 is a term;
16807 == 2 mod 5, so 5 is a term.
		

Crossrefs

Cf. A066438.
Cf. Solutions to 7^n == k (mod n): A277371 (k=-3), A277370 (k=-2), A015954 (k=-1), A067947 (k=1), this sequence (k=2), A277554 (k=3).
Cf. Solutions to b^n == 2 (mod n): A015919 (b=2), A276671 (b=3), A130421 (b=4), A124246 (b=5), this sequence (b=7), A116622 (b=13).

Programs

  • Mathematica
    Join[{1},Select[Range[5173*10^5],PowerMod[7,#,#]==2&]] (* The program will generate the first 10 terms of the sequence; it would take a very long time to generate the 11th term. *) (* Harvey P. Dale, Apr 15 2020 *)
  • PARI
    isok(n) = Mod(7, n)^n == 2; \\ Michel Marcus, Oct 13 2016

Formula

A066438(a(n)) = 2 for n > 1.

Extensions

a(10) from Michel Marcus, Oct 13 2016
a(11) from Max Alekseyev, Oct 18 2016

A277628 Positive integers n such that 3^n == 6 (mod n).

Original entry on oeis.org

1, 3, 21, 936340943, 10460353197, 9374251222371, 23326283250291, 615790788171551
Offset: 1

Views

Author

Dmitry Ezhov, Oct 24 2016

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Sep 12 2017

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), this sequence (k=6), A277126 (k=7), A277630 (k=8), A277274 (k=11).

Programs

  • PARI
    isok(n) = Mod(3, n)^n == Mod(6, n);

Extensions

a(6)-a(8) from Max Alekseyev, Sep 12 2017
Showing 1-10 of 13 results. Next