A015973
Positive integers n such that n | (3^n + 2).
Original entry on oeis.org
1, 5, 77, 278377, 3697489, 219596687717, 56865169816619
Offset: 1
a(1)=1 prepended and a(6)-a(7) added by
Max Alekseyev, Aug 04 2011
A116622
Positive integers n such that 13^n == 2 (mod n).
Original entry on oeis.org
1, 11, 140711, 863101, 1856455, 115602923, 566411084209, 706836043419179
Offset: 1
Solutions to 13^n == k (mod n):
A015963 (k=-1),
A116621 (k=1), this sequence (k=2),
A116629 (k=3),
A116630 (k=4),
A116611 (k=5),
A116631 (k=6),
A116632 (k=7),
A295532 (k=8),
A116636 (k=9),
A116620 (k=10),
A116638 (k=11),
A116639 (k=15).
-
Select[Range[1, 500000], Mod[13^#, #] == 2 &] (* G. C. Greubel, Nov 19 2017 *)
Join[{1}, Select[Range[5000000], PowerMod[13, #, #] == 2 &]] (* Robert Price, Apr 10 2020 *)
-
isok(n) = Mod(13, n)^n == 2; \\ Michel Marcus, Nov 19 2017
Term a(1)=1 is prepended and a(7)-a(8) are added by
Max Alekseyev, Jun 29 2011
A276740
Numbers n such that 3^n == 5 (mod n).
Original entry on oeis.org
1, 2, 4, 76, 418, 1102, 4687, 7637, 139183, 2543923, 1614895738, 9083990938, 23149317409, 497240757797, 4447730232523, 16000967516764, 65262766108619, 141644055557882
Offset: 1
3 == 5 (mod 1), so 1 is a term;
9 == 5 (mod 2), so 2 is a term.
Solutions to 3^n == k (mod n):
A277340 (k=-11),
A277289 (k=-7),
A277288 (k=-5),
A015973 (k=-2),
A015949 (k=-1),
A067945 (k=1),
A276671 (k=2), this sequence (k=5),
A277628 (k=6),
A277126 (k=7),
A277630 (k=8),
A277274 (k=11).
-
Select[Range[10^7], PowerMod[3, #, #] == Mod[5, #] &] (* Michael De Vlieger, Sep 26 2016 *)
-
isok(n) = Mod(3, n)^n == Mod(5, n); \\ Michel Marcus, Sep 17 2016
-
A276740_list = [1,2,4]+[n for n in range(5,10**6) if pow(3,n,n) == 5] # Chai Wah Wu, Oct 04 2016
A277126
Positive integers n such that 3^n == 7 (mod n).
Original entry on oeis.org
1, 2, 295, 883438, 252027511, 7469046275, 26782373099, 53191768475, 55246802458, 819613658855, 893727887879978
Offset: 1
3 == 7 mod 1, so 1 is a term;
9 == 7 mod 2, so 2 is a term.
- M. A. Alekseyev. "Problem 4101". Crux Mathematicorum 42:1 (2016), 28.
A277288
Positive integers k such that k divides 3^k + 5.
Original entry on oeis.org
1, 2, 14, 1978, 38209, 4782974, 9581014, 244330711, 365496202, 1661392258, 116084432414, 288504187458218, 490179448388654, 802245996685561
Offset: 1
3^14 + 5 = 4782974 = 14 * 341641, so 14 is a term.
-
is(n)=Mod(3,n)^n==-5; \\ Joerg Arndt, Oct 09 2016
-
A277288_list = [1,2]+[n for n in range(3,10**6) if pow(3,n,n)==n-5] # Chai Wah Wu, Oct 09 2016
-
def A277288_list(search_limit):
n, t, r = 1, Integer(3), [1]
while n < search_limit:
n += 1
t *= 3
if n.divides(t+5): r.append(n)
return r # Peter Luschny, Oct 10 2016
A277289
Positive integers n such that n | (3^n + 7).
Original entry on oeis.org
1, 2, 4, 5, 8, 25, 44, 4664, 6568, 1353025, 2919526, 5709589, 7827725, 64661225, 85132756, 153872408, 743947534, 34304296003, 38832409867, 40263727492, 1946603375348, 2469908330348, 64471909888247, 274267749806485, 888906849689897, 896501949422459
Offset: 1
3^25 + 7 = 847288609450 = 25 * 33891544378, so 25 is a term.
-
is(n)=Mod(3,n)^n==-7; \\ Joerg Arndt, Oct 09 2016
-
A277289_list = [1,2,4,5]+[n for n in range(6,10**6) if pow(3,n,n)==n-7] # Chai Wah Wu, Oct 12 2016
A277274
Positive integers n such that 3^n == 11 (mod n).
Original entry on oeis.org
1, 2, 1162, 1692934, 3851999, 274422823, 14543645261, 492230729674, 773046873382, 13010754158393, 31446154470014, 583396812890467, 598371102650063
Offset: 1
3 == 11 mod 1, so 1 is a term.
9 == 11 mod 2, so 2 is a term.
-
k = 3; lst = {1, 2}; While[k < 12000000001, If[ PowerMod[3, k, k] == 11, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Oct 08 2016 *)
A277340
Positive integers n such that n | (3^n + 11).
Original entry on oeis.org
1, 2, 4, 7, 10, 92, 1099, 29530, 281473, 657892, 3313964, 9816013, 18669155396, 94849225930, 358676424226, 957439868543, 1586504109310, 41431374800470, 241469610359708, 256165266592379
Offset: 1
3^10 + 11 = 59060 = 10 * 5906, so 10 is a term.
-
is(n)=Mod(3,n)^n==-11; \\ Joerg Arndt, Oct 10 2016
-
A277340_list = [1,2,4,7,10]+[n for n in range(11,10**6) if pow(3,n,n)==n-11] # Chai Wah Wu, Oct 11 2016
A277401
Positive integers n such that 7^n == 2 (mod n).
Original entry on oeis.org
1, 5, 143, 1133, 2171, 8567, 16805, 208091, 1887043, 517295383, 878436591673
Offset: 1
7 == 2 mod 1, so 1 is a term;
16807 == 2 mod 5, so 5 is a term.
-
Join[{1},Select[Range[5173*10^5],PowerMod[7,#,#]==2&]] (* The program will generate the first 10 terms of the sequence; it would take a very long time to generate the 11th term. *) (* Harvey P. Dale, Apr 15 2020 *)
-
isok(n) = Mod(7, n)^n == 2; \\ Michel Marcus, Oct 13 2016
A277628
Positive integers n such that 3^n == 6 (mod n).
Original entry on oeis.org
1, 3, 21, 936340943, 10460353197, 9374251222371, 23326283250291, 615790788171551
Offset: 1
Solutions to 3^n == k (mod n):
A277340 (k=-11),
A277289 (k=-7),
A277288 (k=-5),
A015973 (k=-2),
A015949 (k=-1),
A067945 (k=1),
A276671 (k=2),
A276740 (k=5), this sequence (k=6),
A277126 (k=7),
A277630 (k=8),
A277274 (k=11).
Showing 1-10 of 13 results.
Comments