A015973
Positive integers n such that n | (3^n + 2).
Original entry on oeis.org
1, 5, 77, 278377, 3697489, 219596687717, 56865169816619
Offset: 1
a(1)=1 prepended and a(6)-a(7) added by
Max Alekseyev, Aug 04 2011
A116611
Positive integers n such that 13^n == 5 (mod n).
Original entry on oeis.org
1, 2, 4, 44, 82, 236, 25433, 177764, 219244, 86150213, 107218402, 1260236441, 12856300141, 447650116364, 657175627369, 14543842704596, 125035120614917
Offset: 1
44 is in this sequence because 13^44 = 10315908977942302627204470186314316211062255002161 = 234452476771415968800101595143507186615051250049*44 + 5 == 5 (mod 44).
Solutions to 13^n == k (mod n):
A001022 (k=0),
A015963 (k=-1),
A116621 (k=1),
A116622 (k=2),
A116629 (k=3),
A116630 (k=4), this sequence (k=5),
A116631 (k=6),
A116632 (k=7),
A295532 (k=8),
A116636 (k=9),
A116620(k=10),
A116638 (k=11),
A116639 (k=15).
Terms 1,2,4 are prepended and a(13)-a(17) are added by
Max Alekseyev, Jun 29 2011, Nov 27 2017
A277126
Positive integers n such that 3^n == 7 (mod n).
Original entry on oeis.org
1, 2, 295, 883438, 252027511, 7469046275, 26782373099, 53191768475, 55246802458, 819613658855, 893727887879978
Offset: 1
3 == 7 mod 1, so 1 is a term;
9 == 7 mod 2, so 2 is a term.
- M. A. Alekseyev. "Problem 4101". Crux Mathematicorum 42:1 (2016), 28.
A277288
Positive integers k such that k divides 3^k + 5.
Original entry on oeis.org
1, 2, 14, 1978, 38209, 4782974, 9581014, 244330711, 365496202, 1661392258, 116084432414, 288504187458218, 490179448388654, 802245996685561
Offset: 1
3^14 + 5 = 4782974 = 14 * 341641, so 14 is a term.
-
is(n)=Mod(3,n)^n==-5; \\ Joerg Arndt, Oct 09 2016
-
A277288_list = [1,2]+[n for n in range(3,10**6) if pow(3,n,n)==n-5] # Chai Wah Wu, Oct 09 2016
-
def A277288_list(search_limit):
n, t, r = 1, Integer(3), [1]
while n < search_limit:
n += 1
t *= 3
if n.divides(t+5): r.append(n)
return r # Peter Luschny, Oct 10 2016
A277289
Positive integers n such that n | (3^n + 7).
Original entry on oeis.org
1, 2, 4, 5, 8, 25, 44, 4664, 6568, 1353025, 2919526, 5709589, 7827725, 64661225, 85132756, 153872408, 743947534, 34304296003, 38832409867, 40263727492, 1946603375348, 2469908330348, 64471909888247, 274267749806485, 888906849689897, 896501949422459
Offset: 1
3^25 + 7 = 847288609450 = 25 * 33891544378, so 25 is a term.
-
is(n)=Mod(3,n)^n==-7; \\ Joerg Arndt, Oct 09 2016
-
A277289_list = [1,2,4,5]+[n for n in range(6,10**6) if pow(3,n,n)==n-7] # Chai Wah Wu, Oct 12 2016
A277274
Positive integers n such that 3^n == 11 (mod n).
Original entry on oeis.org
1, 2, 1162, 1692934, 3851999, 274422823, 14543645261, 492230729674, 773046873382, 13010754158393, 31446154470014, 583396812890467, 598371102650063
Offset: 1
3 == 11 mod 1, so 1 is a term.
9 == 11 mod 2, so 2 is a term.
-
k = 3; lst = {1, 2}; While[k < 12000000001, If[ PowerMod[3, k, k] == 11, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Oct 08 2016 *)
A277340
Positive integers n such that n | (3^n + 11).
Original entry on oeis.org
1, 2, 4, 7, 10, 92, 1099, 29530, 281473, 657892, 3313964, 9816013, 18669155396, 94849225930, 358676424226, 957439868543, 1586504109310, 41431374800470, 241469610359708, 256165266592379
Offset: 1
3^10 + 11 = 59060 = 10 * 5906, so 10 is a term.
-
is(n)=Mod(3,n)^n==-11; \\ Joerg Arndt, Oct 10 2016
-
A277340_list = [1,2,4,7,10]+[n for n in range(11,10**6) if pow(3,n,n)==n-11] # Chai Wah Wu, Oct 11 2016
A277628
Positive integers n such that 3^n == 6 (mod n).
Original entry on oeis.org
1, 3, 21, 936340943, 10460353197, 9374251222371, 23326283250291, 615790788171551
Offset: 1
Solutions to 3^n == k (mod n):
A277340 (k=-11),
A277289 (k=-7),
A277288 (k=-5),
A015973 (k=-2),
A015949 (k=-1),
A067945 (k=1),
A276671 (k=2),
A276740 (k=5), this sequence (k=6),
A277126 (k=7),
A277630 (k=8),
A277274 (k=11).
A277630
Positive integers n such that 3^n == 8 (mod n).
Original entry on oeis.org
1, 5, 2352527, 193841707, 17126009179703, 380211619942943
Offset: 1
Solutions to 3^n == k (mod n):
A277340 (k=-11),
A277289 (k=-7),
A277288 (k=-5),
A015973 (k=-2),
A015949 (k=-1),
A067945 (k=1),
A276671 (k=2),
A276740 (k=5),
A277628 (k=6),
A277126 (k=7), this sequence (k=8),
A277274 (k=11).
Showing 1-9 of 9 results.
Comments