A116631
Positive integers n such that 13^n == 6 (mod n).
Original entry on oeis.org
1, 7, 8743, 50239, 312389, 8789977, 87453889, 96301009, 3963715129, 5062673539, 6854133309107, 16987071590111, 72278468169733, 411419589731633, 590475819370933
Offset: 1
Solutions to 13^n == k (mod n):
A001022 (k=0),
A015963 (k=-1),
A116621 (k=1),
A116622 (k=2),
A116629 (k=3),
A116630 (k=4),
A116611 (k=5), this sequence (k=6),
A116632 (k=7),
A295532 (k=8),
A116636 (k=9),
A116620(k=10),
A116638 (k=11),
A116639 (k=15).
-
Join[{1}, Select[Range[1, 9000], Mod[13^#, #] == 6 &]] (* G. C. Greubel, Nov 19 2017 *)
Join[{1}, Select[Range[10000000], PowerMod[13, #, #] == 6 &]] (* Robert Price, Apr 10 2020 *)
-
isok(n) = Mod(13, n)^n == 6; \\ Michel Marcus, Nov 19 2017
Term 1 is prepended and a(11)-a(15) added by
Max Alekseyev, Jun 29 2011, Dec 19 2017
A276740
Numbers n such that 3^n == 5 (mod n).
Original entry on oeis.org
1, 2, 4, 76, 418, 1102, 4687, 7637, 139183, 2543923, 1614895738, 9083990938, 23149317409, 497240757797, 4447730232523, 16000967516764, 65262766108619, 141644055557882
Offset: 1
3 == 5 (mod 1), so 1 is a term;
9 == 5 (mod 2), so 2 is a term.
Solutions to 3^n == k (mod n):
A277340 (k=-11),
A277289 (k=-7),
A277288 (k=-5),
A015973 (k=-2),
A015949 (k=-1),
A067945 (k=1),
A276671 (k=2), this sequence (k=5),
A277628 (k=6),
A277126 (k=7),
A277630 (k=8),
A277274 (k=11).
-
Select[Range[10^7], PowerMod[3, #, #] == Mod[5, #] &] (* Michael De Vlieger, Sep 26 2016 *)
-
isok(n) = Mod(3, n)^n == Mod(5, n); \\ Michel Marcus, Sep 17 2016
-
A276740_list = [1,2,4]+[n for n in range(5,10**6) if pow(3,n,n) == 5] # Chai Wah Wu, Oct 04 2016
A277630
Positive integers n such that 3^n == 8 (mod n).
Original entry on oeis.org
1, 5, 2352527, 193841707, 17126009179703, 380211619942943
Offset: 1
Solutions to 3^n == k (mod n):
A277340 (k=-11),
A277289 (k=-7),
A277288 (k=-5),
A015973 (k=-2),
A015949 (k=-1),
A067945 (k=1),
A276671 (k=2),
A276740 (k=5),
A277628 (k=6),
A277126 (k=7), this sequence (k=8),
A277274 (k=11).
Showing 1-3 of 3 results.
Comments