cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dmitry Ezhov

Dmitry Ezhov's wiki page.

Dmitry Ezhov has authored 10 sequences.

A306666 Positive integers x such that x*(7-5*x+x^2)*(6-4*x+x^2) is a square.

Original entry on oeis.org

1, 2, 3, 7, 21
Offset: 1

Author

Dmitry Ezhov, Mar 04 2019

Keywords

Comments

No other terms below 10^6.
No other terms below 10^10. - Chai Wah Wu, Nov 24 2019

Programs

  • Mathematica
    Select[Range[1000], IntegerQ[Sqrt[#*(7 - 5*# + #^2)*(6 - 4*# + #^2)]] &] (* Vaclav Kotesovec, Mar 10 2019 *)
  • PARI
    isok(x)=issquare(x*(7-5*x+x^2)*(6-4*x+x^2));
    
  • Python
    from sympy.ntheory.primetest import is_square
    A306666_list = [n for n in range(1,10**3) if is_square(n*(n*(n*(n*(n - 9) + 33) - 58) + 42))] # Chai Wah Wu, Nov 24 2019

A320076 a(n) is smallest positive integer i such that difference of numerator and denominator of sum of j^(-i), when j=1..n and n > 2, is prime.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 32, 1
Offset: 3

Author

Dmitry Ezhov, Oct 05 2018

Keywords

Comments

a(11) > 6360.
a(11) > 12000. - Chai Wah Wu, Nov 15 2018
a(19) = a(20) = a(26) = a(30) = a(31) = a(33) = a(40) = 1, a(44) = a(48) = a(49) = 2, a(42) = 3, a(14) = 5, a(24) = a(46) = 7, a(12) = 8, a(13) = 17, a(47) = 19, a(25) = 49, a(38) = 54, a(37) = 179, a(16) = 207, a(22) = 676, a(18) = 690, a(43) = 880, a(17) = 1068, a(34) = 1199. - Chai Wah Wu, Nov 20 2018
a(15) = 2590, a(23) = 3734. - Chai Wah Wu, Nov 21 2018

Crossrefs

Cf. A320077.

Programs

  • Mathematica
    a[n_] := Do[s = HarmonicNumber[n, r]; If[PrimeQ[Numerator[s] - Denominator[s]], Return[r]], {r, 1, Infinity}]; Table[a[n], {n, 3, 10}] (* Vaclav Kotesovec, Nov 14 2018 *)
  • PARI
    a(n)={for(i=1, +oo, s=sum(j=1, n, j^(-i)); p=numerator(s); q=denominator(s); if(ispseudoprime(p-q), return(i)))};

A320077 a(n) is smallest positive integer i such that sum of numerator and denominator of sum of j^(-i), when j=1..n, is prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 34, 1, 1, 5
Offset: 1

Author

Dmitry Ezhov, Oct 05 2018

Keywords

Comments

a(17) > 7000, a(32) = 2015.
a(18) = a(25) = a(31) = 6, a(19) = a(22) = a(37) = 5, a(20) = a(27) = a(35) = a(36) = a(39) = a(48) = 1, a(23) = a(38) = a(49) = 2, a(24) = a(29) = a(42) = 3, a(26) = 12, a(28) = 75, a(30) = 8, a(33) = 7, a(41) = 121, a(44) = 1052, a(46) = 125, a(47) = 1527. - Chai Wah Wu, Nov 19 2018

Crossrefs

Cf. A320076.

Programs

  • Mathematica
    a[n_] := Do[s = HarmonicNumber[n, r]; If[PrimeQ[Numerator[s] + Denominator[s]], Return[r]], {r, 1, Infinity}]; Table[a[n], {n, 1, 16}] (* Vaclav Kotesovec, Nov 14 2018 *)
  • PARI
    a(n)={for(i=1, +oo, s=sum(j=1, n, j^(-i)); p=numerator(s); q=denominator(s); if(ispseudoprime(p+q), return(i)))};

A282669 Prime numbers p > 3 such that 2^p - 9 is prime.

Original entry on oeis.org

5, 11, 17, 251, 563, 21011
Offset: 1

Author

Dmitry Ezhov, Mar 07 2017

Keywords

Comments

Let W = 2^p - 9 and s = (W+7)/(2*p), then 3^s == 4 (mod W) for terms 1..6.
a(7) > 3480081 using A059610. - Michael S. Branicky, Jan 27 2025

Crossrefs

Prime terms of A059610.

Programs

  • Mathematica
    Select[Prime[Range[3,565]],PrimeQ[2^#-9]&] (* The program generates the first five terms of the sequence. *) (* Harvey P. Dale, Aug 24 2024 *)
  • PARI
    forprime(p=5, 10^5, W= 2^p-9; if(ispseudoprime(W), print1(p, ", ")))

A283266 Prime numbers p such that 2^p - 3 is prime.

Original entry on oeis.org

3, 5, 29, 233, 42689, 69337
Offset: 1

Author

Dmitry Ezhov, Mar 04 2017

Keywords

Comments

Let W = 2^p - 3 and s = (W+1)/(2*p), then 3^s == -2 (mod W) for terms 1..6.
a(7) > 2086750 using A050414. - Michael S. Branicky, Jan 27 2025

Crossrefs

Prime terms in A050414.

Programs

  • PARI
    forprime(p=2, 10^5, W= 2^p-3; if(ispseudoprime(W), print1(p, ", ")))

A283191 Prime numbers p such that (2^p - 5)/3 is prime.

Original entry on oeis.org

7, 13, 19, 31, 373, 811, 1117, 5059, 12601
Offset: 1

Author

Dmitry Ezhov, Mar 02 2017

Keywords

Comments

Let W = (2^p - 5)/3 and s = (W+1)/(2*p), then 5^s == 2 (mod W) for terms 1..9.
Subsequence of 7, 13, 19, 31, 51, 55, 85, 111, 319, 373,.. which are numbers m such that (2^m-5)/3 is prime. - R. J. Mathar, Mar 05 2017
a(10) > 3*10^5. - Michael S. Branicky, Jan 30 2025

Crossrefs

Cf. A000978.

Programs

  • Mathematica
    Select[Prime@ Range[2, 1000], PrimeQ[(2^# - 5)/3] &] (* Michael De Vlieger, Mar 03 2017 *)
  • PARI
    forprime(p=3, 30000, W= (2^p-5)/3; if(ispseudoprime(W), print1(p, ", ")))

A278792 a(n) is the positive integer x such that 3^((M-1)/(2*p)) == -2^x (mod M), where p > 2 is prime, M=2^p-1 is the n-th Mersenne prime and x < p.

Original entry on oeis.org

2, 2, 1, 6, 16, 4, 5, 25, 18, 20, 45, 61, 91, 939, 817, 336, 862, 2533, 3404, 2822, 3136, 1554, 9371, 10712, 21311, 44296, 68185, 66909, 31147, 25648
Offset: 2

Author

Dmitry Ezhov, Nov 28 2016

Keywords

Comments

Let s=(M-1)/(2*p) and z is multiplicative order of 3 modulo M, then M|2^(x+p*i)+3^(s+z*j), where integer i,j>=0.

Crossrefs

Programs

  • PARI
    A000043=[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657];
    for(n=2, #A000043, p= A000043[n]; M=2^p-1; s= (M-1)/2/p; x= valuation(lift(-Mod(3,M)^s), 2); print1(n,": ",x,", "));

A277630 Positive integers n such that 3^n == 8 (mod n).

Original entry on oeis.org

1, 5, 2352527, 193841707, 17126009179703, 380211619942943
Offset: 1

Author

Dmitry Ezhov, Oct 24 2016

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Sep 13 2017

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277628 (k=6), A277126 (k=7), this sequence (k=8), A277274 (k=11).

Programs

  • PARI
    isok(n) = Mod(3, n)^n == Mod(8, n);

Extensions

a(5)-a(6) established by Max Alekseyev, Sep 13 2017

A277628 Positive integers n such that 3^n == 6 (mod n).

Original entry on oeis.org

1, 3, 21, 936340943, 10460353197, 9374251222371, 23326283250291, 615790788171551
Offset: 1

Author

Dmitry Ezhov, Oct 24 2016

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Sep 12 2017

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), this sequence (k=6), A277126 (k=7), A277630 (k=8), A277274 (k=11).

Programs

  • PARI
    isok(n) = Mod(3, n)^n == Mod(6, n);

Extensions

a(6)-a(8) from Max Alekseyev, Sep 12 2017

A276740 Numbers n such that 3^n == 5 (mod n).

Original entry on oeis.org

1, 2, 4, 76, 418, 1102, 4687, 7637, 139183, 2543923, 1614895738, 9083990938, 23149317409, 497240757797, 4447730232523, 16000967516764, 65262766108619, 141644055557882
Offset: 1

Author

Dmitry Ezhov, Sep 16 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 194995887252090239, 2185052151122686482926861593785262. - Max Alekseyev, Oct 13 2016

Examples

			3 == 5 (mod 1), so 1 is a term;
9 == 5 (mod 2), so 2 is a term.
		

Crossrefs

Cf. A066601.
Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), this sequence (k=5), A277628 (k=6), A277126 (k=7), A277630 (k=8), A277274 (k=11).

Programs

  • Mathematica
    Select[Range[10^7], PowerMod[3, #, #] == Mod[5, #] &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    isok(n) = Mod(3, n)^n == Mod(5, n); \\ Michel Marcus, Sep 17 2016
    
  • Python
    A276740_list = [1,2,4]+[n for n in range(5,10**6) if pow(3,n,n) == 5] # Chai Wah Wu, Oct 04 2016

Extensions

a(11)-a(13) from Chai Wah Wu, Oct 05 2016
a(14) from Lars Blomberg, Oct 12 2016
a(15)-a(18) from Max Alekseyev, Oct 13 2016
a(12) was missing Robert G. Wilson v, Oct 19 2016