cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033553 3-Knödel numbers or D-numbers: numbers m > 3 such that m | k^(m-2)-k for all k with gcd(k, m) = 1.

Original entry on oeis.org

9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 693, 699, 717, 723, 753, 771, 789, 807, 813, 819
Offset: 1

Views

Author

Keywords

Comments

From Max Alekseyev, Oct 03 2016: (Start)
Also, composite numbers m such that A000010(p^k)=(p-1)*p^(k-1) divides m-3 for every prime power p^k dividing m (cf. A002997).
Properties: (i) All terms are odd. (ii) A prime power p^k with k>1 may divide a term only if p=3 and k=2. (iii) Many terms are divisible by 3. The first term not divisible by 3 is a(2000) = 50963 (cf. A277344). (End)
All terms satisfy the congruence 2^m == 8 (mod m) and thus belong to A015922. Sequence a(n)/3 is nearly identical to A106317, which does not contain the terms 399/3 = 133 and 195/3 = 65. - Gary Detlefs, May 28 2014; corrected by Max Alekseyev, Oct 03 2016
Numbers m > 3 such that A002322(m) divides m-3. - Thomas Ordowski, Jul 15 2017
Called "D numbers" by Morrow (1951), in analogy to Carmichael numbers (A002997) that were also known then as "F numbers". Called "C_3 numbers" (and in general "C_k numbers") by Knödel (1953). Makowski (1962/63) proved that there are infinitely many k-Knödel numbers for all k >= 2. The 1-Knödel numbers are the Carmichael numbers (A002997). - Amiram Eldar, Mar 25 2024, Apr 21 2024

References

  • A. Makowski, Generalization of Morrow's D-Numbers, Bull. Belg. Math. Soc. Simon Stevin, Vol. 36 (1962/63), p. 71.
  • Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer, 2004, pp. 102-103.

Crossrefs

Programs

  • Maple
    isKnodel := proc(n,k)
        local a;
        for a from 1 to n do
            if igcd(a,n) = 1 then
                if modp(a&^(n-k),n) <> 1 then
                    return false;
                end if;
            end if;
        end do:
        return true;
    end proc:
    isA033553 := proc(n)
        isKnodel(n,3) ;
    end proc:
    A033553 := proc(n)
        option remember;
        if n = 1 then
            return 9;
        else
            for a from procname(n-1)+1 do
                if isprime(a) then
                    next;
                end if;
                if isA033553(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A033553(n),n=1..100) ; # R. J. Mathar, Aug 14 2024
  • Mathematica
    Select[Range[4, 10^3], Divisible[# - 3, CarmichaelLambda[#]] &] (* Michael De Vlieger, Jul 15 2017 *)
  • PARI
    { isA033553(n) = my(p=factor(n)); for(i=1,matsize(p)[1], if( (n-3)%eulerphi(p[i,1]^p[i,2]), return(0)); ); 1; } \\ Max Alekseyev, Oct 04 2016

Extensions

Edited by N. J. A. Sloane, May 07 2007

A130133 Terms in A015922 not divisible by 3.

Original entry on oeis.org

1, 2, 4, 8, 248, 731, 1333, 3503, 17608, 35003, 50963, 62611, 82603, 90148, 94643, 106978, 201295, 231311, 253828, 335723, 364808, 374573, 425323, 490915, 592595, 628015, 725203, 984343, 1031803, 1112023, 1136195, 1376903, 1411343, 1430003, 1642798, 1926088
Offset: 1

Views

Author

Zak Seidov, May 12 2007

Keywords

Comments

Intersection of A015922 and A001651. - Michel Marcus, Oct 13 2013

Crossrefs

Intersection with A033553 gives A277344.

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1)) while
          irem(k, 3)=0 or 2&^k mod k <> 8 mod k do od; k
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 04 2014
  • Mathematica
    {1, 2, 4, 8} ~Join~ Select[Range[2 10^6], PowerMod[2, #, #] == 8 && !Divisible[#, 3]&] (* Jean-François Alcover, Nov 02 2020 *)
  • PARI
    isok(n) = (n % 3) && (Mod(2^n, n) == Mod(8, n)); \\ Michel Marcus, Oct 13 2013

Extensions

a(17)-a(28) from Michel Marcus, Oct 13 2013
a(29)-a(36) from Alois P. Heinz, Jun 04 2014

A242865 Numbers n such that 3^(n - 3) is congruent to 1 modulo n.

Original entry on oeis.org

3, 9299, 31903, 50963, 87043, 115918, 116891, 219827, 241043, 394243, 550243, 617503, 760243, 806623, 1029253, 1050787, 1458083, 1642798, 1899458, 2864755, 3205387, 3588115, 3839363, 4164578, 5041223, 5610583, 5834755, 5977555, 7837903, 8005558, 8067433, 8128823, 9007603, 9298903, 9449113, 9617443, 9835843
Offset: 1

Views

Author

Felix Fröhlich, May 24 2014

Keywords

Crossrefs

Intersection with A033553 gives A277344.

Programs

  • Mathematica
    Select[Range[10^4], Mod[3^(# - 3), #] == 1 &] (* Alonso del Arte, May 27 2014 *)
  • PARI
    for(n=3, 10^6, if(Mod(3, n)^(n-3)==1, print1(n, ", ")))
Showing 1-3 of 3 results.