cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A277344 3-Knödel numbers (A033553) that are not divisible by 3.

Original entry on oeis.org

50963, 5834755, 9835843, 155627923, 245056003, 332852435, 556268443, 724014203, 795650963, 831912763, 2440444163, 4080848203, 5067702643, 5140068643, 5555216803, 7461332483, 8438160643, 11766788323, 11951765003, 13058213003, 13483943203, 14528402983, 16644521435, 17847852803
Offset: 1

Views

Author

Max Alekseyev, Oct 09 2016

Keywords

Crossrefs

Intersection of A033553 and A242865.
Intersection of A033553 and A130133.
Subsequence of A015922.

A033554 In A015922, not in A033553.

Original entry on oeis.org

1, 2, 3, 4, 8, 248, 731, 1333, 1533, 2583, 2847, 3503, 4161, 4251, 4947, 4983, 5355, 5715, 6141, 7503, 8103, 9435, 9513, 9831, 10923, 12291, 13107, 14043, 17608, 17889, 20853, 23871, 25443, 27795, 29127, 29319, 29643, 30783, 32235, 33915, 34323, 35003
Offset: 1

Views

Author

Keywords

Extensions

Terms 1, 2, 3, 4, 8 prepended by Max Alekseyev, Oct 03 2016

A050991 Duplicate of A033553.

Original entry on oeis.org

9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201
Offset: 1

Views

Author

Keywords

A208728 Composite numbers n such that b^(n+1) == 1 (mod n) for every b coprime to n.

Original entry on oeis.org

15, 35, 255, 455, 1295, 2703, 4355, 6479, 9215, 10439, 11951, 16211, 23435, 27839, 44099, 47519, 47879, 62567, 63167, 65535, 93023, 94535, 104195, 120959, 131327, 133055, 141155, 142883, 157079, 170819, 196811, 207935, 260831, 283679, 430199, 560735, 576719
Offset: 1

Views

Author

Paolo P. Lava, Mar 01 2012

Keywords

Comments

GCD(b,n)=1 and b^(n+1) == 1 (mod n).
The sequence lists the squarefree composite numbers n such that every prime divisor p of n satisfies (p-1)|(n+1) (similar to Korselt's criterion).
The sequence can be considered as an extension of k-Knödel numbers to k negative, in this case equal to -1.
Numbers n > 3 such that b^(n+2) == b (mod n) for every integer b. Also, numbers n > 3 such that A002322(n) divides n+1. Are there infinitely many such numbers? It seems that such numbers n > 35 have at least three prime factors. - Thomas Ordowski, Jun 25 2017
Proof that 15 and 35 are the only numbers with only two prime factors (and so all others have >= 3): Since n is squarefree and composite, it has at least two prime factors, p and q. If these are the only two, n = p*q. Then the criterion is that (p-1)|(n+1) -> (p-1)|pq+1, and q-1|pq+1. Write pq+1 = j*(p-1) = k*(q-1). Rearranging, p*(j-q)=j+1 and q*(k-p)=k+1. Since j = (pq+1)/(p-1), for large n, j~=q, and k~=p. But we see that p divides j+1~=q, and q divides k+1~=p. For large n this is only possible if p and q are roughly equal, so j-q=k-p=1. Otherwise, we have j+1 >= 2*p and k+1 >= 2*q, and which puts upper bounds on p and q. Enumerating these gives (p,q)=(3,5) and (p,q)=(5,7) as the only solutions. - Alex Meiburg, Oct 03 2024

Examples

			6479 is part of the sequence because its prime factors are 11, 19 and 31: (6479+1)/(11-1)=648, (6479+1)/(19-1)=360 and (6479+1)/(31-1)=216.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local d, ok, p;
    if issqrfree(n) then p:=factorset(n); ok:=1;
    for d from 1 to nops(p) do if frac((n+1)/(p[d]-1))>0 then ok:=0;
    break; fi; od; if ok=1 then n; fi; fi; end: seq(P(i),i=5..576719);
  • Mathematica
    Select[Range[2, 576719], SquareFreeQ[#] && ! PrimeQ[#] && Union[Mod[# + 1, Transpose[FactorInteger[#]][[1]] - 1]] == {0} &] (* T. D. Noe, Mar 05 2012 *)
  • PARI
    is(n)=if(isprime(n)||!issquarefree(n)||n<3, return(0)); my(f=factor(n)[, 1]); for(i=1, #f, if((n+1)%(f[i]-1), return(0))); 1 \\ Charles R Greathouse IV, Mar 05 2012

Extensions

Definition corrected by Thomas Ordowski, Jun 25 2017

A015922 Numbers k such that 2^k == 8 (mod k).

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 248, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633
Offset: 1

Views

Author

Keywords

Comments

For all m, 2^A015921(m) - 1 belongs to this sequence.

Crossrefs

Contains A033553 as a subsequence.
The odd terms form A276967.

Programs

  • Mathematica
    a015922Q[n_Integer] := If[Mod[2^n, n] == Mod[8, n], True, False];
    a015922[n_Integer] :=
    Flatten[Position[Thread[a015922Q[Range[n]]], True]];
    a015922[1000000] (* Michael De Vlieger, Jul 16 2014 *)
    m = 8; Join[Select[Range[m], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
    Join[{1,2,3,4,8},Select[Range[650],PowerMod[2,#,#]==8&]] (* Harvey P. Dale, Aug 22 2020 *)
  • PARI
    isok(n) = Mod(2, n)^n == Mod(8, n); \\ Michel Marcus, Oct 13 2013, Jul 16 2014

Extensions

First 5 terms inserted by David W. Wilson

A050990 2-Knödel numbers.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 22, 24, 26, 30, 34, 38, 46, 56, 58, 62, 74, 82, 86, 94, 106, 118, 122, 132, 134, 142, 146, 158, 166, 178, 182, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458
Offset: 1

Views

Author

Keywords

Comments

Numbers k > 2 such that A002322(k) divides k-2. Contains all doubled primes and all doubled Carmichael numbers. - Thomas Ordowski, Apr 23 2017
Problem: are there infinitely many 2-Knodel numbers divisible by 4? - Thomas Ordowski, Jun 21 2017
Named after the Austrian mathematician and computer scientist Walter Knödel (1926-2018). - Amiram Eldar, Jun 08 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[4, 460, 2], Divisible[# - 2, CarmichaelLambda@ #] &] (* Michael De Vlieger, Apr 24 2017 *)
  • PARI
    a002322(n) = lcm(znstar(n)[2]);
    forstep(n=4, 500, 2, if((n - 2)%a002322(n)==0, print1(n,", "))) \\ Indranil Ghosh, Jun 22 2017

A050992 4-Knödel numbers.

Original entry on oeis.org

6, 8, 12, 16, 20, 24, 28, 40, 44, 48, 52, 60, 68, 76, 80, 92, 112, 116, 120, 124, 148, 154, 164, 172, 188, 208, 212, 236, 240, 244, 264, 268, 280, 284, 292, 316, 332, 340, 356, 364, 388, 404, 412, 428, 436, 452, 508, 520, 524, 548, 556, 596, 604, 628, 652
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[6, 1000, 2], Divisible[# - 4, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A050993 5-Knödel numbers.

Original entry on oeis.org

25, 65, 85, 145, 165, 185, 205, 265, 305, 365, 445, 485, 505, 545, 565, 685, 745, 785, 825, 865, 905, 965, 985, 1085, 1145, 1165, 1205, 1285, 1345, 1385, 1405, 1465, 1565, 1585, 1685, 1745, 1765, 1865, 1925, 1945, 1985, 2005, 2045, 2105, 2165
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10, 2500, 5], Divisible[# - 5, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A208154 6-Knödel numbers.

Original entry on oeis.org

8, 10, 12, 18, 24, 30, 36, 42, 66, 72, 78, 84, 90, 102, 114, 126, 138, 168, 174, 186, 210, 222, 234, 246, 252, 258, 282, 318, 354, 366, 390, 396, 402, 426, 438, 456, 474, 498, 504, 534, 546, 582, 606, 618, 630, 642, 654, 678, 762, 786, 798, 822, 834, 894, 906
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:= proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,6);
  • Mathematica
    knodelQ[m_Integer?PrimeQ, n_Integer] := False; knodelQ[m_Integer, n_Integer] := Module[{i = n + 1}, While[i < m && (GCD[i, m] > 1 || Mod[i^(m - n), m] == 1), i++]; (i == m)]; Select[Range[1000], knodelQ[#, 6] &] (* Alonso del Arte, Feb 24 2012 *)

A208158 10-Knödel numbers.

Original entry on oeis.org

12, 24, 28, 30, 50, 70, 110, 130, 150, 170, 190, 230, 290, 310, 330, 370, 410, 430, 442, 470, 530, 532, 550, 590, 610, 670, 710, 730, 790, 830, 890, 910, 970, 1010, 1030, 1070, 1090, 1130, 1270, 1310, 1370, 1390, 1490, 1510, 1570, 1630, 1650, 1670, 1730, 1790
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:=proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,10)
  • Mathematica
    Select[Range[12, 1790, 2], Divisible[# - 10, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)
Showing 1-10 of 21 results. Next