cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A130134 Even terms in A015922.

Original entry on oeis.org

2, 4, 8, 248, 17608, 90148, 106978, 253828, 364808, 1642798, 1926088, 6176264, 21879938, 30484408, 34634428, 96593698, 134396408, 223622468, 283585928, 327327388, 457961188, 809965148, 1709420344, 1815124028, 2164392968, 2360006456, 2431619908, 2500777828, 2922255548, 3888155428, 5672481928
Offset: 1

Views

Author

Zak Seidov, May 12 2007

Keywords

Comments

Also, the even terms of A033554.

Crossrefs

Programs

  • PARI
    isok(n) = !(n % 2) && (Mod(2^n, n) == Mod(8, n)); \\ Michel Marcus, Oct 13 2013

Extensions

a(8)-a(9) from Michel Marcus, Oct 13 2013
Terms a(10) onward from Max Alekseyev, Oct 11 2016

A130133 Terms in A015922 not divisible by 3.

Original entry on oeis.org

1, 2, 4, 8, 248, 731, 1333, 3503, 17608, 35003, 50963, 62611, 82603, 90148, 94643, 106978, 201295, 231311, 253828, 335723, 364808, 374573, 425323, 490915, 592595, 628015, 725203, 984343, 1031803, 1112023, 1136195, 1376903, 1411343, 1430003, 1642798, 1926088
Offset: 1

Views

Author

Zak Seidov, May 12 2007

Keywords

Comments

Intersection of A015922 and A001651. - Michel Marcus, Oct 13 2013

Crossrefs

Intersection with A033553 gives A277344.

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1)) while
          irem(k, 3)=0 or 2&^k mod k <> 8 mod k do od; k
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 04 2014
  • Mathematica
    {1, 2, 4, 8} ~Join~ Select[Range[2 10^6], PowerMod[2, #, #] == 8 && !Divisible[#, 3]&] (* Jean-François Alcover, Nov 02 2020 *)
  • PARI
    isok(n) = (n % 3) && (Mod(2^n, n) == Mod(8, n)); \\ Michel Marcus, Oct 13 2013

Extensions

a(17)-a(28) from Michel Marcus, Oct 13 2013
a(29)-a(36) from Alois P. Heinz, Jun 04 2014

A033554 In A015922, not in A033553.

Original entry on oeis.org

1, 2, 3, 4, 8, 248, 731, 1333, 1533, 2583, 2847, 3503, 4161, 4251, 4947, 4983, 5355, 5715, 6141, 7503, 8103, 9435, 9513, 9831, 10923, 12291, 13107, 14043, 17608, 17889, 20853, 23871, 25443, 27795, 29127, 29319, 29643, 30783, 32235, 33915, 34323, 35003
Offset: 1

Views

Author

Keywords

Extensions

Terms 1, 2, 3, 4, 8 prepended by Max Alekseyev, Oct 03 2016

A033553 3-Knödel numbers or D-numbers: numbers m > 3 such that m | k^(m-2)-k for all k with gcd(k, m) = 1.

Original entry on oeis.org

9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 693, 699, 717, 723, 753, 771, 789, 807, 813, 819
Offset: 1

Views

Author

Keywords

Comments

From Max Alekseyev, Oct 03 2016: (Start)
Also, composite numbers m such that A000010(p^k)=(p-1)*p^(k-1) divides m-3 for every prime power p^k dividing m (cf. A002997).
Properties: (i) All terms are odd. (ii) A prime power p^k with k>1 may divide a term only if p=3 and k=2. (iii) Many terms are divisible by 3. The first term not divisible by 3 is a(2000) = 50963 (cf. A277344). (End)
All terms satisfy the congruence 2^m == 8 (mod m) and thus belong to A015922. Sequence a(n)/3 is nearly identical to A106317, which does not contain the terms 399/3 = 133 and 195/3 = 65. - Gary Detlefs, May 28 2014; corrected by Max Alekseyev, Oct 03 2016
Numbers m > 3 such that A002322(m) divides m-3. - Thomas Ordowski, Jul 15 2017
Called "D numbers" by Morrow (1951), in analogy to Carmichael numbers (A002997) that were also known then as "F numbers". Called "C_3 numbers" (and in general "C_k numbers") by Knödel (1953). Makowski (1962/63) proved that there are infinitely many k-Knödel numbers for all k >= 2. The 1-Knödel numbers are the Carmichael numbers (A002997). - Amiram Eldar, Mar 25 2024, Apr 21 2024

References

  • A. Makowski, Generalization of Morrow's D-Numbers, Bull. Belg. Math. Soc. Simon Stevin, Vol. 36 (1962/63), p. 71.
  • Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer, 2004, pp. 102-103.

Crossrefs

Programs

  • Maple
    isKnodel := proc(n,k)
        local a;
        for a from 1 to n do
            if igcd(a,n) = 1 then
                if modp(a&^(n-k),n) <> 1 then
                    return false;
                end if;
            end if;
        end do:
        return true;
    end proc:
    isA033553 := proc(n)
        isKnodel(n,3) ;
    end proc:
    A033553 := proc(n)
        option remember;
        if n = 1 then
            return 9;
        else
            for a from procname(n-1)+1 do
                if isprime(a) then
                    next;
                end if;
                if isA033553(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A033553(n),n=1..100) ; # R. J. Mathar, Aug 14 2024
  • Mathematica
    Select[Range[4, 10^3], Divisible[# - 3, CarmichaelLambda[#]] &] (* Michael De Vlieger, Jul 15 2017 *)
  • PARI
    { isA033553(n) = my(p=factor(n)); for(i=1,matsize(p)[1], if( (n-3)%eulerphi(p[i,1]^p[i,2]), return(0)); ); 1; } \\ Max Alekseyev, Oct 04 2016

Extensions

Edited by N. J. A. Sloane, May 07 2007

A128122 Numbers m such that 2^m == 6 (mod m).

Original entry on oeis.org

1, 2, 10669, 6611474, 43070220513807782
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^17. - Max Alekseyev, Nov 18 2022
A large term: 862*(2^861-3)/281437921287063162726198552345362315020202285185118249390789 (203 digits). - Max Alekseyev, Sep 24 2016

Examples

			2 == 6 (mod 1), so 1 is a term;
4 == 6 (mod 2), so 2 is a term.
		

Crossrefs

Solutions to 2^m == k (mod m): A000079 (k=0),A187787 (k=1/2), A296369 (k=-1/2), A006521 (k=-1), A296370 (k=3/2), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), this sequence (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    m = 6; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 2 added by N. J. A. Sloane, Apr 23 2007
a(5) from Max Alekseyev, Nov 18 2022

A295532 Positive integers n such that 13^n == 8 (mod n).

Original entry on oeis.org

1, 5, 371285, 3957661, 70348567451, 42831939409247
Offset: 1

Views

Author

Max Alekseyev, Nov 23 2017

Keywords

Comments

No other terms below 10^15.

Crossrefs

Sequences 13^n == k (mod n): A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), this sequence (k=8), A116636 (k=9), A116620 (k=10), A116638 (k=11), A116639 (k=15).

Programs

  • Mathematica
    Join[{1, 5}, Select[Range[4000000], PowerMod[13, #, #] == 8 &]] (* Robert Price, Apr 10 2020 *)

A296369 Numbers m such that 2^m == -1/2 (mod m).

Original entry on oeis.org

1, 5, 65, 377, 1189, 1469, 25805, 58589, 134945, 137345, 170585, 272609, 285389, 420209, 538733, 592409, 618449, 680705, 778805, 1163065, 1520441, 1700945, 2099201, 2831009, 4020029, 4174169, 4516109, 5059889, 5215769
Offset: 1

Views

Author

Max Alekseyev, Dec 10 2017

Keywords

Comments

Equivalently, 2^(m+1) == -1 (mod m), or m divides 2^(m+1) + 1.
The sequence is infinite, see A055685.

Crossrefs

Solutions to 2^m == k (mod m): A296370 (k=3/2), A187787 (k=1/2), this sequence (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^5], Divisible[2^(# + 1) + 1, #] &] (* Robert Price, Oct 11 2018 *)
  • Python
    A296369_list = [n for n in range(1,10**6) if pow(2,n+1,n) == n-1] # Chai Wah Wu, Nov 04 2019

Formula

a(n) = A055685(n) - 1.

Extensions

Incorrect term 4285389 removed by Chai Wah Wu, Nov 04 2019

A015927 Positive integers n such that 2^n == 2^7 (mod n).

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 15, 16, 28, 32, 49, 62, 64, 91, 112, 128, 133, 196, 217, 255, 259, 301, 427, 448, 469, 511, 527, 553, 679, 721, 763, 784, 889, 973, 992, 1015, 1057, 1099, 1141, 1168, 1267, 1351, 1393, 1477, 1561, 1603, 1687, 1897, 1939, 1981, 2107, 2149, 2191, 2317, 2359, 2443, 2569, 2611, 2653
Offset: 1

Views

Author

Keywords

Comments

For all m, 2^A015922(m)-1 belongs to this sequence.

Crossrefs

Contains A208155 as a subsequence.
The odd terms form A276969.

Programs

  • Mathematica
    Select[Range[3000],PowerMod[2,#,#]==PowerMod[2,7,#]&] (* Harvey P. Dale, Mar 15 2018 *)

Extensions

Edited by Max Alekseyev, Jul 30 2011

A015926 Positive integers n such that 2^n == 2^6 (mod n).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 24, 30, 31, 32, 36, 42, 48, 64, 66, 72, 78, 84, 90, 96, 102, 114, 126, 138, 144, 168, 174, 176, 186, 192, 210, 222, 234, 246, 252, 258, 282, 288, 318, 336, 354, 366, 390, 396, 402, 426, 438, 456, 474, 496, 498, 504, 510, 534, 546
Offset: 1

Views

Author

Keywords

Comments

The odd terms are given by A215610.
For all m, 2^A033981(m)-1 belongs to this sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Mod[2^# - 2^6, #] == 0 &] (* T. D. Noe, Aug 17 2012 *)

Extensions

Edited by Max Alekseyev, Jul 30 2011

A015929 Positive integers n such that 2^n == 2^8 (mod n).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 20, 24, 32, 40, 48, 56, 60, 64, 80, 88, 96, 104, 120, 127, 128, 136, 140, 152, 160, 184, 192, 224, 232, 240, 248, 256, 260, 272, 296, 308, 320, 328, 344, 376, 384, 408, 416, 424, 472, 480
Offset: 1

Views

Author

Keywords

Comments

The odd terms are given by A215611.
For all m, 2^A051447(m)-1 belongs to this sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Mod[2^# - 2^8, #] == 0 &] (* T. D. Noe, Aug 17 2012 *)

Extensions

Edited by Max Alekseyev, Jul 30 2011
Showing 1-10 of 19 results. Next