cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A116631 Positive integers n such that 13^n == 6 (mod n).

Original entry on oeis.org

1, 7, 8743, 50239, 312389, 8789977, 87453889, 96301009, 3963715129, 5062673539, 6854133309107, 16987071590111, 72278468169733, 411419589731633, 590475819370933
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

No other terms below 10^15. A large term: 2455610470454186971078168169. - Max Alekseyev, Dec 19 2017

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), this sequence (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), A116639 (k=15).

Programs

  • Mathematica
    Join[{1}, Select[Range[1, 9000], Mod[13^#, #] == 6 &]] (* G. C. Greubel, Nov 19 2017 *)
    Join[{1}, Select[Range[10000000], PowerMod[13, #, #] == 6 &]] (* Robert Price, Apr 10 2020 *)
  • PARI
    isok(n) = Mod(13, n)^n == 6; \\ Michel Marcus, Nov 19 2017

Extensions

More terms from Ryan Propper, Mar 30 2007
Term 1 is prepended and a(11)-a(15) added by Max Alekseyev, Jun 29 2011, Dec 19 2017

A128121 Numbers k such that 2^k == 5 (mod k).

Original entry on oeis.org

1, 3, 19147, 129505699483, 674344345281, 1643434407157, 5675297754009, 12174063716147, 162466075477787, 313255455573801, 324082741109271
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128122, A128123, A128124, A128125, A128126.

Programs

  • Mathematica
    m = 5; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 3 added by N. J. A. Sloane, Apr 23 2007
Missing a(10) inserted by Sergey Paramonov, Sep 06 2021

A015925 Positive integers n such that 2^n == 2^5 (mod n).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 14, 16, 25, 32, 56, 65, 85, 145, 165, 185, 205, 221, 224, 265, 305, 365, 368, 445, 465, 485, 505, 545, 565, 685, 745, 785, 825, 865, 905, 965, 985, 1022, 1025, 1085, 1145, 1165, 1205, 1285, 1316, 1345, 1385, 1405, 1424, 1465, 1565, 1585, 1685, 1705, 1745
Offset: 1

Views

Author

Keywords

Comments

For all m, 2^A128122(m)-1 belongs to this sequence.

Crossrefs

Contains A050993 as a subsequence.
The odd terms form A276968.

Programs

  • Mathematica
    m = 32; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Edited by Max Alekseyev, Jul 30 2011

A128123 Numbers k such that 2^k == 10 (mod k).

Original entry on oeis.org

1, 2, 6, 18, 16666, 262134, 4048124214, 24430928839, 243293052886, 41293676570106, 3935632929857549
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

Some larger terms: 266895924489780149, 2335291686841914329, 18494453435532853111

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128124, A128125, A128126.

Programs

  • Mathematica
    m = 10; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1, 2 and 6 added by N. J. A. Sloane, Apr 23 2007
Missing terms a(9)-a(10) added by Max Alekseyev, Dec 16 2013
a(11) from Max Alekseyev, Sep 27 2016

A296369 Numbers m such that 2^m == -1/2 (mod m).

Original entry on oeis.org

1, 5, 65, 377, 1189, 1469, 25805, 58589, 134945, 137345, 170585, 272609, 285389, 420209, 538733, 592409, 618449, 680705, 778805, 1163065, 1520441, 1700945, 2099201, 2831009, 4020029, 4174169, 4516109, 5059889, 5215769
Offset: 1

Views

Author

Max Alekseyev, Dec 10 2017

Keywords

Comments

Equivalently, 2^(m+1) == -1 (mod m), or m divides 2^(m+1) + 1.
The sequence is infinite, see A055685.

Crossrefs

Solutions to 2^m == k (mod m): A296370 (k=3/2), A187787 (k=1/2), this sequence (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^5], Divisible[2^(# + 1) + 1, #] &] (* Robert Price, Oct 11 2018 *)
  • Python
    A296369_list = [n for n in range(1,10**6) if pow(2,n+1,n) == n-1] # Chai Wah Wu, Nov 04 2019

Formula

a(n) = A055685(n) - 1.

Extensions

Incorrect term 4285389 removed by Chai Wah Wu, Nov 04 2019

A128124 Numbers k such that 2^k == 12 (mod k).

Original entry on oeis.org

1, 2, 4, 5, 3763, 125714, 167716, 1803962, 2895548, 4031785, 36226466, 16207566916, 103742264732, 29000474325364, 51053256144532, 219291270961199, 1611547934753332, 5816826177630619
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Programs

  • Mathematica
    m = 12; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

More terms from Ryan Propper, Mar 23 2007
1, 2, 4 and 5 added by N. J. A. Sloane, Apr 23 2007
a(13)-a(15) from Max Alekseyev, May 19 2011
a(15) corrected, a(16)-a(18) added by Max Alekseyev, Oct 02 2016

A128126 Numbers k such that 2^k == 18 (mod k).

Original entry on oeis.org

1, 2, 14, 35, 77, 98, 686, 1715, 5957, 18995, 26075, 43921, 49901, 52334, 86555, 102475, 221995, 250355, 1228283, 1493597, 4260059, 6469715, 10538675, 15374219, 19617187, 22731275, 53391779, 60432239, 68597795, 85672139, 175791077
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128123, A128124, A128125.

Programs

  • Magma
    [1,2,14] cat [n: n in [1..10^8] | Modexp(2, n, n) eq 18]; // Vincenzo Librandi, Apr 05 2019
  • Mathematica
    m = 18; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
    Join[{1,2,14},Select[Range[86*10^6],PowerMod[2,#,#]==18&]] (* Harvey P. Dale, Feb 23 2025 *)
  • PARI
    isok(n) = Mod(2, n)^n == 18; \\ Michel Marcus, Oct 09 2018
    

Extensions

More terms from Joe Crump (joecr(AT)carolina.rr.com), Mar 04 2007
1, 2 and 14 added by N. J. A. Sloane, Apr 23 2007

A128125 Numbers k such that 2^k == 14 (mod k).

Original entry on oeis.org

1, 2, 3, 10, 1010, 61610, 469730, 2037190, 3820821, 9227438, 21728810, 24372562, 207034456857, 1957657325241, 2002159320610, 35169368880130, 36496347203230, 116800477091426
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^15. Some larger terms: 279283702428813463, 3075304070192893442, 21894426987819404424310, 4616079845508388554313022889, 82759461944940747300611642693066719359651817521, 446*(2^445-7)/1061319625781480182060453906975 (107 digits). - Max Alekseyev, Oct 03 2016

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128123, A128124, A128126.

Programs

  • Mathematica
    For[n=1, n<= 10^6, n++, If[PowerMod[2,n,n] == Mod[14,n], Print[n]]] (* Stefan Steinerberger, May 05 2007 *)
    m = 14; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1, 2, 3 and 10 added by N. J. A. Sloane, Apr 23 2007
More terms from Stefan Steinerberger, May 05 2007
a(13) from Max Alekseyev, May 15 2011
a(14), a(16), a(17) from Max Alekseyev, Dec 16 2013
a(15), a(18) from Max Alekseyev, Oct 03 2016

A276968 Odd integers n such that 2^n == 2^5 (mod n).

Original entry on oeis.org

1, 3, 5, 25, 65, 85, 145, 165, 185, 205, 221, 265, 305, 365, 445, 465, 485, 505, 545, 565, 685, 745, 785, 825, 865, 905, 965, 985, 1025, 1085, 1145, 1165, 1205, 1285, 1345, 1385, 1405, 1465, 1565, 1585, 1685, 1705, 1745, 1765, 1865, 1925, 1945, 1985, 2005, 2045, 2105, 2165, 2245, 2285, 2305, 2325
Offset: 1

Views

Author

Max Alekseyev, Sep 22 2016

Keywords

Comments

Also, integers n such that 2^(n-5) == 1 (mod n).
Contains A050993 as a subsequence.
For all m, 2^A128122(m)-1 belongs to this sequence.

Crossrefs

The odd terms of A015925.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), this sequence (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).

Programs

  • Mathematica
    m = 2^5; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.
Showing 1-10 of 12 results. Next