A128122
Numbers m such that 2^m == 6 (mod m).
Original entry on oeis.org
1, 2, 10669, 6611474, 43070220513807782
Offset: 1
2 == 6 (mod 1), so 1 is a term;
4 == 6 (mod 2), so 2 is a term.
Solutions to 2^m == k (mod m):
A000079 (k=0),
A187787 (k=1/2),
A296369 (k=-1/2),
A006521 (k=-1),
A296370 (k=3/2),
A015919 (k=2),
A006517 (k=-2),
A050259 (k=3),
A015940 (k=-3),
A015921 (k=4),
A244673 (k=-4),
A128121 (k=5),
A245318 (k=-5), this sequence (k=6),
A245728 (k=-6),
A033981 (k=7),
A240941 (k=-7),
A015922 (k=8),
A245319 (k=-8),
A051447 (k=9),
A240942 (k=-9),
A128123 (k=10),
A245594 (k=-10),
A033982 (k=11),
A128124 (k=12),
A051446 (k=13),
A128125 (k=14),
A033983 (k=15),
A015924 (k=16),
A124974 (k=17),
A128126 (k=18),
A125000 (k=19),
A015925 (k=2^5),
A015926 (k=2^6),
A015927 (k=2^7),
A015929 (k=2^8),
A015931 (k=2^9),
A015932 (k=2^10),
A015935 (k=2^11),
A015937 (k=2^12)
-
m = 6; Join[Select[Range[m], Divisible[2^# - m, #] &],
Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
A296369
Numbers m such that 2^m == -1/2 (mod m).
Original entry on oeis.org
1, 5, 65, 377, 1189, 1469, 25805, 58589, 134945, 137345, 170585, 272609, 285389, 420209, 538733, 592409, 618449, 680705, 778805, 1163065, 1520441, 1700945, 2099201, 2831009, 4020029, 4174169, 4516109, 5059889, 5215769
Offset: 1
Solutions to 2^m == k (mod m):
A296370 (k=3/2),
A187787 (k=1/2), this sequence (k=-1/2),
A000079 (k=0),
A006521 (k=-1),
A015919 (k=2),
A006517 (k=-2),
A050259 (k=3),
A015940 (k=-3),
A015921 (k=4),
A244673 (k=-4),
A128121 (k=5),
A245318 (k=-5),
A128122 (k=6),
A245728 (k=-6),
A033981 (k=7),
A240941 (k=-7),
A015922 (k=8),
A245319 (k=-8),
A051447 (k=9),
A240942 (k=-9),
A128123 (k=10),
A245594 (k=-10),
A033982 (k=11),
A128124 (k=12),
A051446 (k=13),
A128125 (k=14),
A033983 (k=15),
A015924 (k=16),
A124974 (k=17),
A128126 (k=18),
A125000 (k=19),
A015925 (k=2^5),
A015926 (k=2^6),
A015927 (k=2^7),
A015929 (k=2^8),
A015931 (k=2^9),
A015932 (k=2^10),
A015935 (k=2^11),
A015937 (k=2^12)
-
Select[Range[10^5], Divisible[2^(# + 1) + 1, #] &] (* Robert Price, Oct 11 2018 *)
-
A296369_list = [n for n in range(1,10**6) if pow(2,n+1,n) == n-1] # Chai Wah Wu, Nov 04 2019
Incorrect term 4285389 removed by
Chai Wah Wu, Nov 04 2019
A347906
Numbers k such that 2^(2*k-1) == 1 (mod k).
Original entry on oeis.org
1, 80519, 107663, 1284113, 1510313, 3933023, 4557713, 24849833, 71871113, 80646143, 98058097, 104832833, 106694033, 146987033, 168204191, 188997463, 205428713, 332693873, 333681761, 336327863, 380284847, 533039513, 552913169, 711999113, 725943719, 805031663, 1000519033, 1069441313, 1476327353, 1610020913
Offset: 1
80519 is a term since 80519 divides 2^161037 - 1 (the multiplicative order of 2 modulo 80519 is 261, which is a divisor of 161037). Note that 2 * 80519 = 161038 = A006935(2) is the smallest even pseudoprime to base 2.
A296104
Numbers k such that 2^k == 3 (mod k-1).
Original entry on oeis.org
2, 111482, 465794, 79036178, 1781269903308, 250369632905748, 708229497085910, 15673900819204068
Offset: 1
-
k = 2; lst = {2}; While[k < 1000000001, If[ PowerMod[2, k, k -1] == 3, AppendTo[lst, k]]; k += 10; If[ PowerMod[2, k, k -1] == 3, AppendTo[lst, k]]; k += 2]; lst (* Robert G. Wilson v, Jan 01 2018 *)
-
is_A296104(n) = Mod(2, n-1)^n == 3; \\ Iain Fox, Dec 07 2017
-
A296104_list = [n for n in range(2,10**6) if pow(2,n,n-1) == 3 % (n-1)] # Chai Wah Wu, Dec 06 2017
A334634
Numbers m that divide 2^m + 11.
Original entry on oeis.org
1, 13, 16043199041, 91118493923, 28047837698634913
Offset: 1
Solutions to 2^n == k (mod n):
A296370 (k=3/2),
A187787 (k=1/2),
A296369 (k=-1/2),
A000079 (k=0),
A006521 (k=-1),
A015919 (k=2),
A006517 (k=-2),
A050259 (k=3),
A015940 (k=-3),
A015921 (k=4),
A244673 (k=-4),
A128121 (k=5),
A245318 (k=-5),
A128122 (k=6),
A245728 (k=-6),
A033981 (k=7),
A240941 (k=-7),
A015922 (k=8),
A245319 (k=-8),
A051447 (k=9),
A240942 (k=-9),
A128123 (k=10),
A245594 (k=-10),
A033982 (k=11), this sequence (k=-11),
A128124 (k=12),
A051446 (k=13),
A128125 (k=14),
A033983 (k=15),
A015924 (k=16),
A124974 (k=17),
A128126 (k=18),
A125000 (k=19),
A015925 (k=2^5),
A015926 (k=2^6),
A015927 (k=2^7),
A015929 (k=2^8),
A015931 (k=2^9),
A015932 (k=2^10),
A015935 (k=2^11),
A015937 (k=2^12).
Showing 1-5 of 5 results.
Comments