cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A055685 Numbers k such that 2^k == -1 (mod k-1).

Original entry on oeis.org

2, 6, 66, 378, 1190, 1470, 25806, 58590, 134946, 137346, 170586, 272610, 285390, 420210, 538734, 592410, 618450, 680706, 778806, 1163066, 1520442, 1700946, 2099202, 2831010, 4020030, 4174170, 4516110, 5059890, 5215770
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

The sequence is infinite. In fact, even its intersection with A006517 (given by A219037) is infinite.

Crossrefs

Programs

  • Mathematica
    Do[If[PowerMod[2, n, n-1]==n-2, Print[n]], {n, 2, 12900000}]
  • Python
    A055685_list = [n for n in range(2,10**6) if pow(2,n,n-1) == n-2] # Chai Wah Wu, Nov 04 2019

Formula

a(n) = A296369(n) + 1.

Extensions

Edited by Max Alekseyev, Oct 11 2012
Incorrect term 4285390 removed by Chai Wah Wu, Nov 04 2019

A128122 Numbers m such that 2^m == 6 (mod m).

Original entry on oeis.org

1, 2, 10669, 6611474, 43070220513807782
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^17. - Max Alekseyev, Nov 18 2022
A large term: 862*(2^861-3)/281437921287063162726198552345362315020202285185118249390789 (203 digits). - Max Alekseyev, Sep 24 2016

Examples

			2 == 6 (mod 1), so 1 is a term;
4 == 6 (mod 2), so 2 is a term.
		

Crossrefs

Solutions to 2^m == k (mod m): A000079 (k=0),A187787 (k=1/2), A296369 (k=-1/2), A006521 (k=-1), A296370 (k=3/2), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), this sequence (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    m = 6; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 2 added by N. J. A. Sloane, Apr 23 2007
a(5) from Max Alekseyev, Nov 18 2022

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.

A328230 Numbers m that divide 3^(m + 1) + 1.

Original entry on oeis.org

1, 2, 4, 5, 14, 244, 365, 434, 854, 2294, 3794, 5966, 7874, 10877, 26474, 33914, 117614, 188774, 231434, 284354, 487634, 501038, 589154, 593774, 621674, 755594, 1255814, 1306934, 1642094, 1911194, 2193124, 2434754, 2484674, 2507834, 2621654, 2643494, 3512114, 3759854, 3997574, 4082246
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 08 2019

Keywords

Comments

Conjecture: For k > 2, k^(m + 1) == -1 (mod m) has an infinite number of positive solutions.

Crossrefs

Programs

  • Magma
    [n+1: n in [0..5000000] | Modexp(3,n+2,n+1) eq n];
    
  • Maple
    filter:= m -> 3 &^ (m+1) + 1 mod m = 0:
    select(filter, [$1..10^7]); # Robert Israel, Oct 30 2019
  • PARI
    isok(m) = Mod(3, m)^(m+1) == -1; \\ Michel Marcus, Oct 10 2019

A329168 Numbers m that divide 4^(m + 1) + 1.

Original entry on oeis.org

1, 17, 4097, 7361, 85073, 658529, 3999137, 72281281, 285143057, 628944689, 854112113, 1423081169, 2561019281, 3111576929, 4298117633, 5921265041, 14224884929, 21336998129, 34317377233, 50723421713, 63797137889, 144269032049, 163834314353, 187397322209, 212565453281
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 06 2019

Keywords

Comments

Conjecture: For k > 1, k^(m + 1) == -1 (mod m) has an infinite number of positive solutions.
Conjecture: For k > 1, if f(1) = p(1) equals one of the prime factors of k^2 + 1, p(i+1) equals one of the prime factors of k^(f(i)+1) + 1 greater than p(i), f(i+1) = f(i)*p(i+1), then k^(f(i) + 1) == -1 (mod f(i)) for all integers i. (Especially in this sequence, k = 4, so {f(i)} can be 17, 4097, 4298117633, ...) - Jinyuan Wang, Nov 16 2019

Crossrefs

Cf. A055685.
Solutions to k^(m + 1) + 1 == -1 (mod m): A296369 (k = 2), A328230 (k = 3).

Programs

  • Magma
    [n + 1: n in [0..5000000] | Modexp(4, n + 2, n + 1) eq n ];
    
  • PARI
    isok(m) = Mod(4, m)^(m+1) == -1; \\ Jinyuan Wang, Nov 16 2019

Extensions

a(13)-a(25) from Giovanni Resta, Nov 08 2019

A319222 Numbers k such that k divides 2^(2k+1) + 1.

Original entry on oeis.org

1, 3, 129, 2537, 51889, 101617, 226873, 270427, 653467, 945667, 1740979, 5819937, 6520987, 9828587, 15452867, 24950857, 51377539, 89519449, 108627601, 135776371, 160126609, 296338873, 310026163, 400431289, 641706243, 643359937, 678257563, 803419697, 902661523, 952431331, 1004273987, 1243893697, 1796055907
Offset: 1

Views

Author

Altug Alkan, Sep 13 2018

Keywords

Comments

Also, numbers k such that 4^k == -1/2 (mod k) (cf. A296369). - Max Alekseyev, Sep 15 2018
If k is in the sequence, and m is another divisor of 2^(2*k+1)+1 and is coprime to k, then m*k is in the sequence. - Robert Israel, Sep 14 2018

Crossrefs

Programs

  • Maple
    filter:= n -> 2 &^ (2*n+1)+1 mod n = 0:
    select(filter, [$1..10^7]); # Robert Israel, Sep 14 2018
  • PARI
    is_A319222(n) = Mod(2, n)^(2*n+1)==-1;

A329222 Numbers m that divide 5^(m + 1) + 1.

Original entry on oeis.org

1, 2, 6, 13, 14, 174, 854, 2694, 78126, 103973, 106694, 121974, 420209, 487374, 1299374, 2174654, 3895094, 4151454, 5842214, 5951129, 6508334, 10637054, 20117894, 24482957, 31999694, 32282053, 32620202, 32872454, 34258454, 52657397, 56114618, 57679082, 65538437, 70782774, 71899526
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 08 2019

Keywords

Comments

Conjecture: For k > 1, k^(m + 1) == -1 (mod m) has an infinite number of positive solutions.

Crossrefs

Cf. A055685.
Solutions to k^(m + 1) == -1 (mod m): A296369 (k=2), A328230 (k=3), A329168 (k=4), this sequence (k=5), A329226 (k=6).

Programs

  • Magma
    [n + 1: n in [0..2000000] | Modexp(5, n + 2, n + 1) eq n];
    
  • Mathematica
    Select[Range[719*10^5],PowerMod[5,#+1,#]==#-1&] (* Harvey P. Dale, Jul 03 2020 *)
  • PARI
    isok(m) = Mod(5, m)^(m+1) == -1; \\ Jinyuan Wang, Nov 16 2019

A329226 Numbers m that divide 6^(m + 1) + 1.

Original entry on oeis.org

1, 37, 16987849, 2416266949, 5995229029, 7193673829, 11465419549, 17783484529, 72155530501, 142013229529, 174523785589, 189282539137, 294183810997, 302690164297, 354613312129, 774557575609, 933821938789, 1407294504937, 1974020768389, 2112969494569, 2878251281401
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 08 2019

Keywords

Comments

Conjecture: For k > 1, k^(m + 1) == -1 (mod m) has an infinite number of positive solutions.
Terms cannot be a multiple of the following primes below 100: 2, 3, 5, 7, 11, 19, 23, 29, 31, 43, 47, 53, 59, 67, 71, 79, 83. - Giovanni Resta, Nov 09 2019

Crossrefs

Cf. A055685.
Solutions to k^(m + 1) == -1 (mod m): A296369 (k=2), A328230 (k=3), A329168 (k=4), A329222 (k=5).

Programs

  • Magma
    [n + 1: n in [0..20000000] | Modexp(6, n + 2, n + 1) eq n];
    
  • PARI
    isok(m) = Mod(6, m)^(m+1) == -1; \\ Jinyuan Wang, Nov 16 2019

Extensions

a(5)-a(21) from Giovanni Resta, Nov 09 2019

A319538 Numbers k such that k divides 2^(2*k+1) - 1.

Original entry on oeis.org

1, 7, 217, 1057, 3937, 10447, 24601, 32767, 91657, 145337, 279527, 666967, 1412113, 2484247, 2874847, 3124327, 4169137, 4472167, 9526207, 12021439, 16539337, 16646017, 19384207, 20139367, 24639727, 28127137, 28940887, 30583087, 66131279, 68068777, 70694167, 72299857, 72903847, 73498471, 87507049
Offset: 1

Views

Author

Altug Alkan, Sep 22 2018

Keywords

Comments

Sequence is infinite because 2^A187787(t) - 1 is a term for all t >= 1.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Mod[2^(2 # + 1) - 1, #] == 0 &] (* Michael De Vlieger, Sep 24 2018 *)
  • PARI
    isok(n) = Mod(2, n)^(2*n+1)==1;

A334634 Numbers m that divide 2^m + 11.

Original entry on oeis.org

1, 13, 16043199041, 91118493923, 28047837698634913
Offset: 1

Views

Author

Max Alekseyev, Sep 10 2020

Keywords

Comments

Equivalently, numbers m such that 2^m == -11 (mod m).
No other terms below 10^17.

Crossrefs

Solutions to 2^n == k (mod n): A296370 (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), this sequence (k=-11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12).

Extensions

a(5) from Sergey Paramonov, Oct 10 2021
Showing 1-10 of 10 results.