cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A329222 Numbers m that divide 5^(m + 1) + 1.

Original entry on oeis.org

1, 2, 6, 13, 14, 174, 854, 2694, 78126, 103973, 106694, 121974, 420209, 487374, 1299374, 2174654, 3895094, 4151454, 5842214, 5951129, 6508334, 10637054, 20117894, 24482957, 31999694, 32282053, 32620202, 32872454, 34258454, 52657397, 56114618, 57679082, 65538437, 70782774, 71899526
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 08 2019

Keywords

Comments

Conjecture: For k > 1, k^(m + 1) == -1 (mod m) has an infinite number of positive solutions.

Crossrefs

Cf. A055685.
Solutions to k^(m + 1) == -1 (mod m): A296369 (k=2), A328230 (k=3), A329168 (k=4), this sequence (k=5), A329226 (k=6).

Programs

  • Magma
    [n + 1: n in [0..2000000] | Modexp(5, n + 2, n + 1) eq n];
    
  • Mathematica
    Select[Range[719*10^5],PowerMod[5,#+1,#]==#-1&] (* Harvey P. Dale, Jul 03 2020 *)
  • PARI
    isok(m) = Mod(5, m)^(m+1) == -1; \\ Jinyuan Wang, Nov 16 2019

A329226 Numbers m that divide 6^(m + 1) + 1.

Original entry on oeis.org

1, 37, 16987849, 2416266949, 5995229029, 7193673829, 11465419549, 17783484529, 72155530501, 142013229529, 174523785589, 189282539137, 294183810997, 302690164297, 354613312129, 774557575609, 933821938789, 1407294504937, 1974020768389, 2112969494569, 2878251281401
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 08 2019

Keywords

Comments

Conjecture: For k > 1, k^(m + 1) == -1 (mod m) has an infinite number of positive solutions.
Terms cannot be a multiple of the following primes below 100: 2, 3, 5, 7, 11, 19, 23, 29, 31, 43, 47, 53, 59, 67, 71, 79, 83. - Giovanni Resta, Nov 09 2019

Crossrefs

Cf. A055685.
Solutions to k^(m + 1) == -1 (mod m): A296369 (k=2), A328230 (k=3), A329168 (k=4), A329222 (k=5).

Programs

  • Magma
    [n + 1: n in [0..20000000] | Modexp(6, n + 2, n + 1) eq n];
    
  • PARI
    isok(m) = Mod(6, m)^(m+1) == -1; \\ Jinyuan Wang, Nov 16 2019

Extensions

a(5)-a(21) from Giovanni Resta, Nov 09 2019
Showing 1-2 of 2 results.