cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A128121 Numbers k such that 2^k == 5 (mod k).

Original entry on oeis.org

1, 3, 19147, 129505699483, 674344345281, 1643434407157, 5675297754009, 12174063716147, 162466075477787, 313255455573801, 324082741109271
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128122, A128123, A128124, A128125, A128126.

Programs

  • Mathematica
    m = 5; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 3 added by N. J. A. Sloane, Apr 23 2007
Missing a(10) inserted by Sergey Paramonov, Sep 06 2021

A128122 Numbers m such that 2^m == 6 (mod m).

Original entry on oeis.org

1, 2, 10669, 6611474, 43070220513807782
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^17. - Max Alekseyev, Nov 18 2022
A large term: 862*(2^861-3)/281437921287063162726198552345362315020202285185118249390789 (203 digits). - Max Alekseyev, Sep 24 2016

Examples

			2 == 6 (mod 1), so 1 is a term;
4 == 6 (mod 2), so 2 is a term.
		

Crossrefs

Solutions to 2^m == k (mod m): A000079 (k=0),A187787 (k=1/2), A296369 (k=-1/2), A006521 (k=-1), A296370 (k=3/2), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), this sequence (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    m = 6; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 2 added by N. J. A. Sloane, Apr 23 2007
a(5) from Max Alekseyev, Nov 18 2022

A296369 Numbers m such that 2^m == -1/2 (mod m).

Original entry on oeis.org

1, 5, 65, 377, 1189, 1469, 25805, 58589, 134945, 137345, 170585, 272609, 285389, 420209, 538733, 592409, 618449, 680705, 778805, 1163065, 1520441, 1700945, 2099201, 2831009, 4020029, 4174169, 4516109, 5059889, 5215769
Offset: 1

Views

Author

Max Alekseyev, Dec 10 2017

Keywords

Comments

Equivalently, 2^(m+1) == -1 (mod m), or m divides 2^(m+1) + 1.
The sequence is infinite, see A055685.

Crossrefs

Solutions to 2^m == k (mod m): A296370 (k=3/2), A187787 (k=1/2), this sequence (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^5], Divisible[2^(# + 1) + 1, #] &] (* Robert Price, Oct 11 2018 *)
  • Python
    A296369_list = [n for n in range(1,10**6) if pow(2,n+1,n) == n-1] # Chai Wah Wu, Nov 04 2019

Formula

a(n) = A055685(n) - 1.

Extensions

Incorrect term 4285389 removed by Chai Wah Wu, Nov 04 2019

A015931 Positive integers n such that 2^n (mod n) == 2^9 (mod n).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 16, 17, 21, 27, 32, 45, 63, 64, 99, 105, 117, 124, 128, 153, 171, 189, 207, 254, 256, 261, 273, 279, 333, 369, 387, 423, 429, 477, 512, 513, 531, 549, 585, 603, 639, 657, 711, 747, 801, 873, 909, 927, 945, 963, 981, 1017, 1143, 1179, 1197, 1209, 1233, 1251, 1341, 1359, 1365, 1413, 1467, 1472, 1503, 1504, 1557, 1611, 1629, 1665, 1719, 1737, 1773, 1785, 1791, 1899, 1971
Offset: 1

Views

Author

Keywords

Comments

For all m, 2^A128123(m)-1 belongs to this sequence.

Crossrefs

Contains A208157 as a subsequence.
The odd terms form A276970.

Programs

  • Mathematica
    Select[Range[2000],PowerMod[2,9,#]==PowerMod[2,#,#]&] (* Harvey P. Dale, Apr 01 2017 *)
  • PARI
    isok(n) = Mod(2, n)^n == 2^9; \\ Michel Marcus, Sep 23 2016

Extensions

Edited by Max Alekseyev, Jul 30 2011
Definition clarified by Harvey P. Dale, Apr 01 2017

A128124 Numbers k such that 2^k == 12 (mod k).

Original entry on oeis.org

1, 2, 4, 5, 3763, 125714, 167716, 1803962, 2895548, 4031785, 36226466, 16207566916, 103742264732, 29000474325364, 51053256144532, 219291270961199, 1611547934753332, 5816826177630619
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Programs

  • Mathematica
    m = 12; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

More terms from Ryan Propper, Mar 23 2007
1, 2, 4 and 5 added by N. J. A. Sloane, Apr 23 2007
a(13)-a(15) from Max Alekseyev, May 19 2011
a(15) corrected, a(16)-a(18) added by Max Alekseyev, Oct 02 2016

A128126 Numbers k such that 2^k == 18 (mod k).

Original entry on oeis.org

1, 2, 14, 35, 77, 98, 686, 1715, 5957, 18995, 26075, 43921, 49901, 52334, 86555, 102475, 221995, 250355, 1228283, 1493597, 4260059, 6469715, 10538675, 15374219, 19617187, 22731275, 53391779, 60432239, 68597795, 85672139, 175791077
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128123, A128124, A128125.

Programs

  • Magma
    [1,2,14] cat [n: n in [1..10^8] | Modexp(2, n, n) eq 18]; // Vincenzo Librandi, Apr 05 2019
  • Mathematica
    m = 18; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
    Join[{1,2,14},Select[Range[86*10^6],PowerMod[2,#,#]==18&]] (* Harvey P. Dale, Feb 23 2025 *)
  • PARI
    isok(n) = Mod(2, n)^n == 18; \\ Michel Marcus, Oct 09 2018
    

Extensions

More terms from Joe Crump (joecr(AT)carolina.rr.com), Mar 04 2007
1, 2 and 14 added by N. J. A. Sloane, Apr 23 2007

A128125 Numbers k such that 2^k == 14 (mod k).

Original entry on oeis.org

1, 2, 3, 10, 1010, 61610, 469730, 2037190, 3820821, 9227438, 21728810, 24372562, 207034456857, 1957657325241, 2002159320610, 35169368880130, 36496347203230, 116800477091426
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^15. Some larger terms: 279283702428813463, 3075304070192893442, 21894426987819404424310, 4616079845508388554313022889, 82759461944940747300611642693066719359651817521, 446*(2^445-7)/1061319625781480182060453906975 (107 digits). - Max Alekseyev, Oct 03 2016

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128123, A128124, A128126.

Programs

  • Mathematica
    For[n=1, n<= 10^6, n++, If[PowerMod[2,n,n] == Mod[14,n], Print[n]]] (* Stefan Steinerberger, May 05 2007 *)
    m = 14; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1, 2, 3 and 10 added by N. J. A. Sloane, Apr 23 2007
More terms from Stefan Steinerberger, May 05 2007
a(13) from Max Alekseyev, May 15 2011
a(14), a(16), a(17) from Max Alekseyev, Dec 16 2013
a(15), a(18) from Max Alekseyev, Oct 03 2016

A276970 Odd integers n such that 2^n == 2^9 (mod n).

Original entry on oeis.org

1, 3, 5, 9, 17, 21, 27, 45, 63, 99, 105, 117, 153, 171, 189, 207, 261, 273, 279, 333, 369, 387, 423, 429, 477, 513, 531, 549, 585, 603, 639, 657, 711, 747, 801, 873, 909, 927, 945, 963, 981, 1017, 1143, 1179, 1197, 1209, 1233, 1251, 1341, 1359, 1365, 1413, 1467, 1503, 1557, 1611, 1629, 1665, 1719, 1737
Offset: 1

Views

Author

Max Alekseyev, Sep 22 2016

Keywords

Comments

Also, integers n such that 2^(n-9) == 1 (mod n).
Contains A208157 as a subsequence.
For all m, 2^A128123(m)-1 belongs to this sequence.

Crossrefs

The odd terms of A015931.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), this sequence (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).

Programs

  • Mathematica
    m = 2^9; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 15 2018 *)

A245594 Numbers k that divide 2^k + 10.

Original entry on oeis.org

1, 2, 3, 9, 14, 161, 261, 5727, 12127, 16394, 20029238, 577738261, 2637324098, 45019843643, 54756012358, 142046769201, 2144325306742, 2247950127743, 34462584090334, 223385072880447
Offset: 1

Views

Author

Derek Orr, Jul 27 2014

Keywords

Comments

No other terms below 10^15. Some larger terms: 58431276133663538, 107614684491896498, 246944720684027923581501, 2^260+5 (79 digits), 581*p (112 digits) where p is the largest prime factor of 2^580+5. - Max Alekseyev, Oct 01 2016

Examples

			3 divides 2^3 + 10 = 18. Thus 3 is a term of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Divisible[2^# + 10, #] &] (* Robert Price, Oct 12 2018 *)
  • PARI
    for(n=1,10^9,if(Mod(2,n)^n==Mod(-10,n),print1(n,", ")))

Extensions

a(13)-a(20) from Max Alekseyev, Oct 01 2016

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.
Showing 1-10 of 11 results. Next