cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A208728 Composite numbers n such that b^(n+1) == 1 (mod n) for every b coprime to n.

Original entry on oeis.org

15, 35, 255, 455, 1295, 2703, 4355, 6479, 9215, 10439, 11951, 16211, 23435, 27839, 44099, 47519, 47879, 62567, 63167, 65535, 93023, 94535, 104195, 120959, 131327, 133055, 141155, 142883, 157079, 170819, 196811, 207935, 260831, 283679, 430199, 560735, 576719
Offset: 1

Views

Author

Paolo P. Lava, Mar 01 2012

Keywords

Comments

GCD(b,n)=1 and b^(n+1) == 1 (mod n).
The sequence lists the squarefree composite numbers n such that every prime divisor p of n satisfies (p-1)|(n+1) (similar to Korselt's criterion).
The sequence can be considered as an extension of k-Knödel numbers to k negative, in this case equal to -1.
Numbers n > 3 such that b^(n+2) == b (mod n) for every integer b. Also, numbers n > 3 such that A002322(n) divides n+1. Are there infinitely many such numbers? It seems that such numbers n > 35 have at least three prime factors. - Thomas Ordowski, Jun 25 2017
Proof that 15 and 35 are the only numbers with only two prime factors (and so all others have >= 3): Since n is squarefree and composite, it has at least two prime factors, p and q. If these are the only two, n = p*q. Then the criterion is that (p-1)|(n+1) -> (p-1)|pq+1, and q-1|pq+1. Write pq+1 = j*(p-1) = k*(q-1). Rearranging, p*(j-q)=j+1 and q*(k-p)=k+1. Since j = (pq+1)/(p-1), for large n, j~=q, and k~=p. But we see that p divides j+1~=q, and q divides k+1~=p. For large n this is only possible if p and q are roughly equal, so j-q=k-p=1. Otherwise, we have j+1 >= 2*p and k+1 >= 2*q, and which puts upper bounds on p and q. Enumerating these gives (p,q)=(3,5) and (p,q)=(5,7) as the only solutions. - Alex Meiburg, Oct 03 2024

Examples

			6479 is part of the sequence because its prime factors are 11, 19 and 31: (6479+1)/(11-1)=648, (6479+1)/(19-1)=360 and (6479+1)/(31-1)=216.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local d, ok, p;
    if issqrfree(n) then p:=factorset(n); ok:=1;
    for d from 1 to nops(p) do if frac((n+1)/(p[d]-1))>0 then ok:=0;
    break; fi; od; if ok=1 then n; fi; fi; end: seq(P(i),i=5..576719);
  • Mathematica
    Select[Range[2, 576719], SquareFreeQ[#] && ! PrimeQ[#] && Union[Mod[# + 1, Transpose[FactorInteger[#]][[1]] - 1]] == {0} &] (* T. D. Noe, Mar 05 2012 *)
  • PARI
    is(n)=if(isprime(n)||!issquarefree(n)||n<3, return(0)); my(f=factor(n)[, 1]); for(i=1, #f, if((n+1)%(f[i]-1), return(0))); 1 \\ Charles R Greathouse IV, Mar 05 2012

Extensions

Definition corrected by Thomas Ordowski, Jun 25 2017

A033553 3-Knödel numbers or D-numbers: numbers m > 3 such that m | k^(m-2)-k for all k with gcd(k, m) = 1.

Original entry on oeis.org

9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 693, 699, 717, 723, 753, 771, 789, 807, 813, 819
Offset: 1

Views

Author

Keywords

Comments

From Max Alekseyev, Oct 03 2016: (Start)
Also, composite numbers m such that A000010(p^k)=(p-1)*p^(k-1) divides m-3 for every prime power p^k dividing m (cf. A002997).
Properties: (i) All terms are odd. (ii) A prime power p^k with k>1 may divide a term only if p=3 and k=2. (iii) Many terms are divisible by 3. The first term not divisible by 3 is a(2000) = 50963 (cf. A277344). (End)
All terms satisfy the congruence 2^m == 8 (mod m) and thus belong to A015922. Sequence a(n)/3 is nearly identical to A106317, which does not contain the terms 399/3 = 133 and 195/3 = 65. - Gary Detlefs, May 28 2014; corrected by Max Alekseyev, Oct 03 2016
Numbers m > 3 such that A002322(m) divides m-3. - Thomas Ordowski, Jul 15 2017
Called "D numbers" by Morrow (1951), in analogy to Carmichael numbers (A002997) that were also known then as "F numbers". Called "C_3 numbers" (and in general "C_k numbers") by Knödel (1953). Makowski (1962/63) proved that there are infinitely many k-Knödel numbers for all k >= 2. The 1-Knödel numbers are the Carmichael numbers (A002997). - Amiram Eldar, Mar 25 2024, Apr 21 2024

References

  • A. Makowski, Generalization of Morrow's D-Numbers, Bull. Belg. Math. Soc. Simon Stevin, Vol. 36 (1962/63), p. 71.
  • Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer, 2004, pp. 102-103.

Crossrefs

Programs

  • Maple
    isKnodel := proc(n,k)
        local a;
        for a from 1 to n do
            if igcd(a,n) = 1 then
                if modp(a&^(n-k),n) <> 1 then
                    return false;
                end if;
            end if;
        end do:
        return true;
    end proc:
    isA033553 := proc(n)
        isKnodel(n,3) ;
    end proc:
    A033553 := proc(n)
        option remember;
        if n = 1 then
            return 9;
        else
            for a from procname(n-1)+1 do
                if isprime(a) then
                    next;
                end if;
                if isA033553(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A033553(n),n=1..100) ; # R. J. Mathar, Aug 14 2024
  • Mathematica
    Select[Range[4, 10^3], Divisible[# - 3, CarmichaelLambda[#]] &] (* Michael De Vlieger, Jul 15 2017 *)
  • PARI
    { isA033553(n) = my(p=factor(n)); for(i=1,matsize(p)[1], if( (n-3)%eulerphi(p[i,1]^p[i,2]), return(0)); ); 1; } \\ Max Alekseyev, Oct 04 2016

Extensions

Edited by N. J. A. Sloane, May 07 2007

A015921 Positive integers n such that 2^n == 4 (mod n).

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 14, 22, 26, 30, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 132, 134, 142, 146, 158, 166, 170, 178, 182, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 372, 382, 386, 394, 398, 422, 446
Offset: 1

Views

Author

Keywords

Comments

Odd terms are given by A173572.
For all m, 2^A050259(m)-1 belongs to this sequence.

Crossrefs

Contains A050990 as a subsequence.

Programs

  • Mathematica
    Select[Range[500], PowerMod[2, #, #] == 4 &] (* Alonso del Arte, Jul 07 2011 *)

Extensions

Edited and terms 1,2,4 prepended by Max Alekseyev, Jul 29 2011

A050992 4-Knödel numbers.

Original entry on oeis.org

6, 8, 12, 16, 20, 24, 28, 40, 44, 48, 52, 60, 68, 76, 80, 92, 112, 116, 120, 124, 148, 154, 164, 172, 188, 208, 212, 236, 240, 244, 264, 268, 280, 284, 292, 316, 332, 340, 356, 364, 388, 404, 412, 428, 436, 452, 508, 520, 524, 548, 556, 596, 604, 628, 652
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[6, 1000, 2], Divisible[# - 4, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A050993 5-Knödel numbers.

Original entry on oeis.org

25, 65, 85, 145, 165, 185, 205, 265, 305, 365, 445, 485, 505, 545, 565, 685, 745, 785, 825, 865, 905, 965, 985, 1085, 1145, 1165, 1205, 1285, 1345, 1385, 1405, 1465, 1565, 1585, 1685, 1745, 1765, 1865, 1925, 1945, 1985, 2005, 2045, 2105, 2165
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10, 2500, 5], Divisible[# - 5, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A208154 6-Knödel numbers.

Original entry on oeis.org

8, 10, 12, 18, 24, 30, 36, 42, 66, 72, 78, 84, 90, 102, 114, 126, 138, 168, 174, 186, 210, 222, 234, 246, 252, 258, 282, 318, 354, 366, 390, 396, 402, 426, 438, 456, 474, 498, 504, 534, 546, 582, 606, 618, 630, 642, 654, 678, 762, 786, 798, 822, 834, 894, 906
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:= proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,6);
  • Mathematica
    knodelQ[m_Integer?PrimeQ, n_Integer] := False; knodelQ[m_Integer, n_Integer] := Module[{i = n + 1}, While[i < m && (GCD[i, m] > 1 || Mod[i^(m - n), m] == 1), i++]; (i == m)]; Select[Range[1000], knodelQ[#, 6] &] (* Alonso del Arte, Feb 24 2012 *)

A208158 10-Knödel numbers.

Original entry on oeis.org

12, 24, 28, 30, 50, 70, 110, 130, 150, 170, 190, 230, 290, 310, 330, 370, 410, 430, 442, 470, 530, 532, 550, 590, 610, 670, 710, 730, 790, 830, 890, 910, 970, 1010, 1030, 1070, 1090, 1130, 1270, 1310, 1370, 1390, 1490, 1510, 1570, 1630, 1650, 1670, 1730, 1790
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:=proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,10)
  • Mathematica
    Select[Range[12, 1790, 2], Divisible[# - 10, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A324404 Squarefree integers m > 1 such that if prime p divides m, then s_p(m) >= p and s_p(m) == 2 (mod p-1), where s_p(m) is the sum of the base p digits of m.

Original entry on oeis.org

1122, 3458, 5642, 6734, 11102, 13202, 17390, 17822, 21170, 22610, 27962, 31682, 46002, 58682, 61778, 79730, 82082, 93314, 105266, 106262, 125490, 127946, 136202, 150722, 153254, 177122, 182002, 202202, 203870, 214370, 231842, 252434, 274298, 278462, 305102, 315282
Offset: 1

Views

Author

Keywords

Comments

For d >= 1 define S_d = (terms m in A324315 such that s_p(m) == d (mod p-1) if prime p divides m). Then S_1 is precisely the Carmichael numbers (A002997), S_2 is A324404, S_3 is A324405, and the union of all S_d for d >= 1 is A324315.
Subsequence of the 2-Knödel numbers (A050990). Generally, for d > 1 the terms of S_d that are greater than d form a subsequence of the d-Knödel numbers.
See Kellner and Sondow 2019.

Examples

			1122 = 2*3*11*17 is squarefree and equals 10001100010_2, 1112120_3, 930_11, and 3f0_17 in base p = 2, 3, 11, and 17. Then s_2(1122) = 1+1+1+1 = 4 >= 2, s_3(1122) = 1+1+1+2+1+2 = 8 >= 3, s_11(1122) = 9+3 = 12 >= 11, and s_17(1122) = 3+f = 3+15 = 18 >= 17. Also, s_2(1122) = 4 == 2 (mod 1), s_3(1122) = 8 == 2 (mod 2), s_11(1122) = 12 == 2 (mod 10), and s_17(1122) = 18 == 2 (mod 16), so 1122 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestSd[n_, d_] := (n > 1) && (d > 0) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # && Mod[SD[n, #] - d, # - 1] == 0 &];
    Select[Range[200000], TestSd[#, 2] &]

Extensions

More terms from Amiram Eldar, Dec 05 2020

A208155 7-Knödel numbers.

Original entry on oeis.org

15, 49, 91, 133, 217, 259, 301, 427, 469, 511, 553, 679, 721, 763, 889, 973, 1015, 1057, 1099, 1141, 1267, 1351, 1393, 1477, 1561, 1603, 1687, 1897, 1939, 1981, 2107, 2149, 2191, 2317, 2359, 2443, 2569, 2611, 2653, 2779, 2863, 2947, 3031, 3073, 3199, 3241, 3409
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:= proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,7);
  • Mathematica
    (* First run program for A208154 to define knodelQ *) Select[Range[3500], knodelQ[#, 7] &] (* Alonso del Arte, Feb 24 2012 *)

A208157 9-Knödel numbers.

Original entry on oeis.org

21, 27, 45, 63, 99, 105, 117, 153, 171, 189, 207, 261, 273, 279, 333, 369, 387, 423, 429, 477, 513, 531, 549, 585, 603, 639, 657, 711, 747, 801, 873, 909, 927, 945, 963, 981, 1017, 1143, 1179, 1197, 1209, 1233, 1251, 1341, 1359, 1365, 1413, 1467, 1503, 1557
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:=proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,9)
  • Mathematica
    Select[Range[12, 1560, 3], Divisible[# - 9, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)
Showing 1-10 of 16 results. Next