cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A033553 3-Knödel numbers or D-numbers: numbers m > 3 such that m | k^(m-2)-k for all k with gcd(k, m) = 1.

Original entry on oeis.org

9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 693, 699, 717, 723, 753, 771, 789, 807, 813, 819
Offset: 1

Views

Author

Keywords

Comments

From Max Alekseyev, Oct 03 2016: (Start)
Also, composite numbers m such that A000010(p^k)=(p-1)*p^(k-1) divides m-3 for every prime power p^k dividing m (cf. A002997).
Properties: (i) All terms are odd. (ii) A prime power p^k with k>1 may divide a term only if p=3 and k=2. (iii) Many terms are divisible by 3. The first term not divisible by 3 is a(2000) = 50963 (cf. A277344). (End)
All terms satisfy the congruence 2^m == 8 (mod m) and thus belong to A015922. Sequence a(n)/3 is nearly identical to A106317, which does not contain the terms 399/3 = 133 and 195/3 = 65. - Gary Detlefs, May 28 2014; corrected by Max Alekseyev, Oct 03 2016
Numbers m > 3 such that A002322(m) divides m-3. - Thomas Ordowski, Jul 15 2017
Called "D numbers" by Morrow (1951), in analogy to Carmichael numbers (A002997) that were also known then as "F numbers". Called "C_3 numbers" (and in general "C_k numbers") by Knödel (1953). Makowski (1962/63) proved that there are infinitely many k-Knödel numbers for all k >= 2. The 1-Knödel numbers are the Carmichael numbers (A002997). - Amiram Eldar, Mar 25 2024, Apr 21 2024

References

  • A. Makowski, Generalization of Morrow's D-Numbers, Bull. Belg. Math. Soc. Simon Stevin, Vol. 36 (1962/63), p. 71.
  • Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer, 2004, pp. 102-103.

Crossrefs

Programs

  • Maple
    isKnodel := proc(n,k)
        local a;
        for a from 1 to n do
            if igcd(a,n) = 1 then
                if modp(a&^(n-k),n) <> 1 then
                    return false;
                end if;
            end if;
        end do:
        return true;
    end proc:
    isA033553 := proc(n)
        isKnodel(n,3) ;
    end proc:
    A033553 := proc(n)
        option remember;
        if n = 1 then
            return 9;
        else
            for a from procname(n-1)+1 do
                if isprime(a) then
                    next;
                end if;
                if isA033553(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A033553(n),n=1..100) ; # R. J. Mathar, Aug 14 2024
  • Mathematica
    Select[Range[4, 10^3], Divisible[# - 3, CarmichaelLambda[#]] &] (* Michael De Vlieger, Jul 15 2017 *)
  • PARI
    { isA033553(n) = my(p=factor(n)); for(i=1,matsize(p)[1], if( (n-3)%eulerphi(p[i,1]^p[i,2]), return(0)); ); 1; } \\ Max Alekseyev, Oct 04 2016

Extensions

Edited by N. J. A. Sloane, May 07 2007

A050990 2-Knödel numbers.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 22, 24, 26, 30, 34, 38, 46, 56, 58, 62, 74, 82, 86, 94, 106, 118, 122, 132, 134, 142, 146, 158, 166, 178, 182, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458
Offset: 1

Views

Author

Keywords

Comments

Numbers k > 2 such that A002322(k) divides k-2. Contains all doubled primes and all doubled Carmichael numbers. - Thomas Ordowski, Apr 23 2017
Problem: are there infinitely many 2-Knodel numbers divisible by 4? - Thomas Ordowski, Jun 21 2017
Named after the Austrian mathematician and computer scientist Walter Knödel (1926-2018). - Amiram Eldar, Jun 08 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[4, 460, 2], Divisible[# - 2, CarmichaelLambda@ #] &] (* Michael De Vlieger, Apr 24 2017 *)
  • PARI
    a002322(n) = lcm(znstar(n)[2]);
    forstep(n=4, 500, 2, if((n - 2)%a002322(n)==0, print1(n,", "))) \\ Indranil Ghosh, Jun 22 2017

A208158 10-Knödel numbers.

Original entry on oeis.org

12, 24, 28, 30, 50, 70, 110, 130, 150, 170, 190, 230, 290, 310, 330, 370, 410, 430, 442, 470, 530, 532, 550, 590, 610, 670, 710, 730, 790, 830, 890, 910, 970, 1010, 1030, 1070, 1090, 1130, 1270, 1310, 1370, 1390, 1490, 1510, 1570, 1630, 1650, 1670, 1730, 1790
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:=proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,10)
  • Mathematica
    Select[Range[12, 1790, 2], Divisible[# - 10, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A015931 Positive integers n such that 2^n (mod n) == 2^9 (mod n).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 16, 17, 21, 27, 32, 45, 63, 64, 99, 105, 117, 124, 128, 153, 171, 189, 207, 254, 256, 261, 273, 279, 333, 369, 387, 423, 429, 477, 512, 513, 531, 549, 585, 603, 639, 657, 711, 747, 801, 873, 909, 927, 945, 963, 981, 1017, 1143, 1179, 1197, 1209, 1233, 1251, 1341, 1359, 1365, 1413, 1467, 1472, 1503, 1504, 1557, 1611, 1629, 1665, 1719, 1737, 1773, 1785, 1791, 1899, 1971
Offset: 1

Views

Author

Keywords

Comments

For all m, 2^A128123(m)-1 belongs to this sequence.

Crossrefs

Contains A208157 as a subsequence.
The odd terms form A276970.

Programs

  • Mathematica
    Select[Range[2000],PowerMod[2,9,#]==PowerMod[2,#,#]&] (* Harvey P. Dale, Apr 01 2017 *)
  • PARI
    isok(n) = Mod(2, n)^n == 2^9; \\ Michel Marcus, Sep 23 2016

Extensions

Edited by Max Alekseyev, Jul 30 2011
Definition clarified by Harvey P. Dale, Apr 01 2017

A276970 Odd integers n such that 2^n == 2^9 (mod n).

Original entry on oeis.org

1, 3, 5, 9, 17, 21, 27, 45, 63, 99, 105, 117, 153, 171, 189, 207, 261, 273, 279, 333, 369, 387, 423, 429, 477, 513, 531, 549, 585, 603, 639, 657, 711, 747, 801, 873, 909, 927, 945, 963, 981, 1017, 1143, 1179, 1197, 1209, 1233, 1251, 1341, 1359, 1365, 1413, 1467, 1503, 1557, 1611, 1629, 1665, 1719, 1737
Offset: 1

Views

Author

Max Alekseyev, Sep 22 2016

Keywords

Comments

Also, integers n such that 2^(n-9) == 1 (mod n).
Contains A208157 as a subsequence.
For all m, 2^A128123(m)-1 belongs to this sequence.

Crossrefs

The odd terms of A015931.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), this sequence (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).

Programs

  • Mathematica
    m = 2^9; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 15 2018 *)

A208156 8-Knödel numbers.

Original entry on oeis.org

12, 14, 16, 20, 24, 32, 40, 48, 56, 60, 80, 88, 96, 104, 120, 136, 140, 152, 160, 184, 224, 232, 240, 248, 260, 296, 308, 328, 344, 376, 408, 416, 424, 472, 480, 488, 528, 536, 560, 568, 584, 632, 664, 680, 712, 728, 776, 808, 824, 856, 872, 904, 1016, 1040
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:=proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,8)
  • Mathematica
    Select[Range[10, 2000, 2], Divisible[# - 8, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A265261 Smallest n-Knödel number, i.e., smallest composite c > n such that each b < c coprime to c satisfies b^(c-n) == 1 (mod c).

Original entry on oeis.org

561, 4, 9, 6, 25, 8, 15, 12, 21, 12, 15, 16, 33, 24, 21, 20, 65, 24, 51, 24, 45, 24, 33, 32, 69, 30, 39, 40, 65, 36, 87, 40, 45, 44, 51, 40, 85, 56, 57, 48, 65, 72, 91, 48, 63, 66, 69, 60, 141, 56, 63, 60, 65, 72, 75, 60, 63, 70, 87, 72, 133, 122, 93, 80, 165
Offset: 1

Views

Author

Felix Fröhlich, Apr 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Range[n + 1, 10^3], Function[c, CompositeQ@ c && AllTrue[Range[1, c - 1] /. x_ /; ! CoprimeQ[x, c] -> Nothing, Mod[#^(c - n), c] == 1 &]]], {n, 65}] (* Michael De Vlieger, Apr 06 2016, Version 10 *)
  • PARI
    a(n) = forcomposite(c=n+1, , my(i=0, j=0); for(b=1, c-1, if(gcd(b, c)==1, i++; if(Mod(b, c)^(c-n)==1, j++))); if(i==j, return(c)))
Showing 1-7 of 7 results.