A242882 Number of compositions of n into parts with distinct multiplicities.
1, 1, 2, 2, 6, 12, 16, 40, 60, 82, 216, 538, 788, 2034, 3740, 6320, 13336, 27498, 42936, 93534, 173520, 351374, 734650, 1592952, 3033194, 6310640, 12506972, 25296110, 49709476, 101546612, 195037028, 391548336, 764947954, 1527004522, 2953533640, 5946359758
Offset: 0
Keywords
Examples
a(0) = 1: the empty composition. a(1) = 1: [1]. a(2) = 2: [1,1], [2]. a(3) = 2: [1,1,1], [3]. a(4) = 6: [1,1,1,1], [1,1,2], [1,2,1], [2,1,1], [2,2], [4]. a(5) = 12: [1,1,1,1,1], [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1], [5].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..264 (terms 0..200 from Alois P. Heinz)
- Vaclav Kotesovec, What is the limit a(n)/2^n ?
Programs
-
Maple
b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!, `if`(i<1, 0, add(`if`(j>0 and j in s, 0, b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i))) end: a:= n-> b(n$2, {}): seq(a(n), n=0..45);
-
Mathematica
b[n_, i_, s_] := b[n, i, s] = If[n == 0, Sum[j, {j, s}]!, If[i < 1, 0, Sum[If[j > 0 && MemberQ[s, j], 0, b[n - i*j, i - 1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
-
PARI
a(n)={((r,k,b,w)->if(!k||!r, if(r,0,w!), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<
Andrew Howroyd, Aug 31 2019