A242921 Lexicographically least increasing sequence avoiding double 3-term arithmetic progressions.
0, 1, 3, 4, 7, 8, 10, 11, 15, 17, 18, 20, 25, 27, 28, 31, 32, 34, 35, 38, 42, 43, 45, 46, 53, 55, 58, 59, 61, 62, 67, 68, 70, 71, 79, 81, 85, 87, 90, 92, 93, 98, 102, 105, 112, 114, 115, 119, 121, 126, 129, 130, 132, 133, 136, 140, 141, 143, 144, 148
Offset: 0
Keywords
Examples
a(8) = 15: 12 is not in the sequence because a(6) = 10, a(7) = 11; 13 is not in the sequence because a(4) = 7, a(6) = 10; 14 is not in the sequence because a(0) = 0, a(4) = 7, so a(8) = 15.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- T. Brown, V. Jungic, and A. Poelstra, On double 3-term arithmetic progressions, arxiv preprint, November 2013.
Programs
-
Maple
a:= proc(n) option remember; local i, t, ok; if n<2 then n else for t from 1+a(n-1) do ok:=true; for i to n/2 while ok do ok:=a(n-2*i)+t <> 2*a(n-i) od; if ok then return t fi od fi end: seq(a(n), n=0..100); # Alois P. Heinz, May 26 2014
-
Mathematica
a[n_] := a[n] = Module[{i, t, ok}, If[n<2, n, For[t = 1+a[n-1], True, t++, ok = True; i = 1; While[ok && i <= n/2, ok = a[n-2*i]+t != 2*a[n-i]; i++]; If[ok, Return[t]]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)
Comments