A242970 Decimal expansion of the constant rho = lim f(n)^(1/n), where f(n) = A214833(n) is the number of arithmetic formulas for n (cf. comments).
4, 0, 7, 6, 5, 6, 1, 7, 8, 5, 2, 7, 6, 0, 4, 6, 1, 9, 8, 6, 0, 4, 0, 2, 2, 8, 5, 2, 8, 1, 5, 0, 2, 0, 2, 6
Offset: 1
Examples
ρ = 4.07656178527604619860402285281502026...
Links
- Edinah K. Gnang, Maksym Radziwill, Carlo Sanna, Counting arithmetic formulas, arXiv:1406.1704 [math.CO], (6 June 2014).
- Edinah K. Gnang, Maksym Radziwill, Carlo Sanna, Counting arithmetic formulas, European Journal of Combinatorics 47 (2015), pp. 40-53.
Formula
f(n) = A214833(n) ~ c*ρ^n/n^(3/2) = A242955*A242970^n/n^(3/2) as n -> oo, thus rho = A242970 = lim f(n)^(1/n) = lim f(n+1)/f(n) = lim (1+1/n)^(3/2)*f(n+1)/f(n), the latter expression being the most accurate/rapidly converging of the three. The values for n = 999, however, yield only 6 correct decimals (4.076559...). - M. F. Hasler, May 04 2017
Extensions
Edited by M. F. Hasler, May 03 2017
Comments