A243018 Numbers k such that Sum_{i=1..k} phi(i) is divisible by Sum_{i=1..k} d(i), where phi(i) is the Euler totient function of i (A000010), and d(i) is the number of divisors of i (A000005).
1, 5, 19, 21, 154, 604
Offset: 1
Examples
phi(1) + phi(2) + phi(3) + phi(4) + phi(5) = 1 + 1 + 2 + 2 + 4 = 10; d(1) + d(2) + d(3) + d(4) + d(5) = 1 + 2 + 2 + 3 + 2 = 10; Finally 10 / 10 = 1.
Programs
-
Magma
[n:n in [1..1000]| IsIntegral(&+[EulerPhi(m):m in [1..n]]/&+[NumberOfDivisors(m):m in [1..n]])] ; // Marius A. Burtea, Mar 25 2019
-
Maple
with(numtheory):P:=proc(q) local a,b,n; a:=0; b:=0; for n from 1 to q do a:=a+tau(n); b:=b+phi(n); if type(b/a,integer) then print(n); fi; od; end: P(10^10);
-
PARI
lista(nn) = {se = 0; sn = 0; for (n=1, nn, se += eulerphi(n); sn += numdiv(n); if (se % sn == 0, print1(n, ", ")););} \\ Michel Marcus, Nov 01 2014
Comments