cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243019 Expansion of -(2*x*sqrt(1-8*x^2)-2*x) / (16*x^3+sqrt(1-8*x^2)*(4*x^2+2*x-1)-8*x^2-2*x+1).

Original entry on oeis.org

1, 1, 5, 7, 33, 51, 233, 379, 1697, 2851, 12585, 21627, 94449, 165075, 714873, 1266027, 5445441, 9746883, 41687369, 75275227, 320420753, 582881971, 2471008281, 4523575371, 19108837601, 35174066851
Offset: 0

Views

Author

Vladimir Kruchinin, May 29 2014

Keywords

Comments

Number of ternary strings of length n that have the same number or more 0's than the combined number of 1's and 2's. For example, a(4) = 33 since the strings are (number of permutations in parentheses): 0000 (1), 0001 (4), 0002 (4), 0011 (6), 0022 (6), 0012 (12). - Enrique Navarrete, Aug 14 2025

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(2*x*Sqrt[1-8*x^2]-2*x)/(16*x^3+Sqrt[1-8*x^2]*(4*x^2+2*x-1)-8*x^2-2*x+1),{x,0,20}],x] (* Vaclav Kotesovec, May 29 2014 *)
  • Maxima
    a(n):=sum(2^(i)*binomial(n,i),i,0,floor((n)/2));

Formula

a(n) = sum(i=0..floor(n/2), 2^i*binomial(n,i)).
G.f.: (x*C'(2*x^2))/(C(2*x^2)*(1-x*C(2*x^2))), where C(x) is g.f. of A000108.
a(n) ~ 2^(3*n/2) * (2+sqrt(2) + (-1)^n*(2-sqrt(2))) / sqrt(2*Pi*n). - Vaclav Kotesovec, May 29 2014
D-finite with recurrence: n^2*a(n) = (3*n^2-4)*a(n-1) + 4*(2*n^2 - 2*n - 1)*a(n-2) - 24*(n-2)*(n+1)*a(n-3). - Vaclav Kotesovec, May 29 2014
a(n) = Sum_{k=0..floor(n/2)} A013609(n,k). - Enrique Navarrete, Aug 14 2025