A243024 Consider a k-digit number m = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + ... + d_(2)*10 + d_(1). Sequence lists the numbers m that divide Sum_{i=1..k-1}{d_(i)^d_(i+1)}+d_(k)^d_(1).
1, 2, 3, 4, 5, 6, 7, 8, 9, 63, 448, 1899, 1942, 4155, 4355, 8503, 28375, 44569, 73687, 1953504, 1954329, 70860598, 522169982
Offset: 1
Examples
For 1899 we have: 9^9 + 9^8 + 8^1 + 1^9 = 430467219. Finally 430467219/1899 = 226681. For 1954329 we have: 9^2 + 2^3 +3^4 + 4^5 + 5^9 + 9^1 + 1^9 = 1954329.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,k,ok,n; for n from 10 to q do a:=[]; b:=n; while b>0 do a:=[op(a),b mod 10]; b:=trunc(b/10); od; b:=0; ok:=1; for k from 2 to nops(a) do if a[k-1]=0 and a[k]=0 then ok:=0; break; else b:=b+a[k-1]^a[k]; fi; od; if ok=1 then if type((b+a[nops(a)]^a[nops(1)])/n,integer) then print(n); fi; fi; od; end: P(10^10);
-
PARI
isok(n) = d = digits(n); k = #d; (sum(i=1, k-1, j=k-i+1; d[j]^d[(j-1)])+ d[1]^d[k]) % n == 0; \\ Michel Marcus, Sep 29 2014
Extensions
a(1)-a(9) prepended and a(23) from Hiroaki Yamanouchi, Sep 29 2014
Comments