A243023 Consider a k-digit number m = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + ... + d_(2)*10 + d_(1). Sequence lists the numbers m that divide Sum_{i=1..k-1}{d_(i+1)^d(i)}+d(1)^d(k) (see example below).
1, 2, 3, 4, 5, 6, 7, 8, 9, 63, 448, 1547, 1693, 6189068, 20443796, 67526389
Offset: 1
Examples
For 63 we have 6^3 + 3^6 = 945 and 945/63 = 15. Obviously also with 36 we have 3^6 + 6^3 = 945 but 945/36 = 105/4. For 6189068 we have: 6^8 + 0^6 + 9^0 + 8^9 + 1^8 + 6^1 + 8^6 = 136159496. Finally 136159496/6189068 = 22.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,k,ok,n; for n from 10 to q do a:=[]; b:=n; while b>0 do a:=[op(a),b mod 10]; b:=trunc(b/10); od; b:=0; ok:=1; for k from 2 to nops(a) do if a[k-1]=0 and a[k]=0 then ok:=0; break; else b:=b+a[k]^a[k-1]; fi; od; if ok=1 then if type((b+a[1]^a[nops(a)])/n,integer) then print(n); fi; fi; od; end: P(10^10);
-
Mathematica
fQ[n_] := Block[{id = IntegerDigits@ n}, IntegerQ[ Total[ (id^RotateLeft@ id)]/n]]; k = 1; lst = {}; While[k < 1000000001, If[fQ@k, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G. Wilson v, Jun 01 2014 *)
Comments