cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243059 If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, with p_a <= p_b <= ... <= p_k, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 0 and for k>=1, p_{k} = A000040(k). a(1)=1 by convention.

Original entry on oeis.org

1, 2, 3, 0, 5, 6, 7, 0, 0, 15, 11, 12, 13, 35, 10, 0, 17, 0, 19, 45, 21, 77, 23, 24, 0, 143, 0, 175, 29, 30, 31, 0, 55, 221, 14, 0, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 0, 0, 187, 1573, 53, 0, 33, 875, 247, 667, 59, 90, 61, 899, 63, 0, 65, 385, 67, 2873, 391, 70, 71, 0
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

A243058 gives all n such that a(n) = n (the fixed points of this sequence, which include primes).
Differs from A243057 in that the "degenerate cases" A070003 are here zeros, but is otherwise equal to it (at the points given by A102750), i.e. for all n, a(A102750(n)) = A243057(A102750(n)) = A242420(A102750(n)).

Examples

			For n = 9 = 3*3 = p_2 * p_2, we have a(n) = p_{3-3} * p_3 = 0*3 = 0. [Like all terms in A070003 this is an example of "degenerate case", where some p's in the product get index 0, and thus are set to 0 by the convention used here.]
For n = 10 = 2*5 = p_1 * p_3, we have a(n) = p_{3-1} * p_3 = 3*5 = 15.
For n = 12 = 2*2*3 = p_1 * p_1 * p_2, we have a(n) = p_{2-1} * p{2-1} * p_2 = p_1^2 * p_2 = 12.
For n = 15 = 3*5 = p_2 * p_3, we have a(n) = p_{3-2} * p_3 = 2*5 = 10.
For n = 2200 = 2*2*2*5*5*11 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5, we have a(n) = p_{5-3} * p_{5-3} * p_{5-1} * p_{5-1} * p_{5-1} * p_5 = 3*3*7*7*7*11 = 33957.
For n = 33957 = 3*3*7*7*7*11 = p_2 * p_2 * p_4 * p_4 * p_4 * p_5, we have a(n) = p_{5-4} * p_{5-4} * p_{5-4} * p_{5-2} * p_{5-2} * p_5 = 2*2*2*5*5*11 = 2200.
		

Crossrefs

Fixed points: A243058 (includes primes).
Positions of zeros: A070003.

Formula

a(1)=1, and for n>1, a(n) = q_{A243056(n)} * a(A032742(n)). Here q_{k} stands for 0 when k=0, and otherwise for the k-th prime, A000040(k).
If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, where p_a <= p_b <= ... <= p_k are (not necessarily distinct) primes (sorted into nondescending order) in the prime factorization of n, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 0 and for k>=1, p_{k} = A000040(k).