A243093 Least number k > n such that n concatenated with k is a perfect power.
6, 5, 6, 9, 12, 25, 29, 41, 61, 24, 56, 25, 31, 44, 21, 81, 28, 49, 36, 25, 87, 201, 104, 336, 281, 244, 44, 224, 241, 276, 36, 49, 64, 81, 344, 100, 249, 44, 69, 96, 209, 436, 56, 89, 369, 225, 61, 400, 284, 176, 84, 441, 361, 76, 225, 169, 76, 564, 319, 84, 504, 500, 504, 516, 536, 564
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A245632.
Programs
-
Mathematica
pp[n_]:=Module[{k=n+1},While[GCD@@FactorInteger[n*10^IntegerLength[ k]+ k][[All,2]]<2,k++];k]; Array[pp,70] (* Harvey P. Dale, Oct 09 2016 *)
-
PARI
a(n)=s=Str(n);k=n+1;while(!ispower(eval(concat(s,Str(k)))),k++);return(k) vector(100,n,a(n))
-
Python
from sympy import perfect_power def a(n): s, k = str(n), n+1 while not perfect_power(int(s+str(k))): k += 1 return k print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Jun 05 2021