A243103 Product of numbers m with 2 <= m <= n whose prime divisors all divide n.
1, 2, 3, 8, 5, 144, 7, 64, 27, 3200, 11, 124416, 13, 6272, 2025, 1024, 17, 35831808, 19, 1024000, 3969, 247808, 23, 859963392, 125, 346112, 729, 2809856, 29, 261213880320000000, 31, 32768, 264627, 18939904, 30625, 26748301344768, 37, 23658496, 369603, 32768000000, 41
Offset: 1
Keywords
Examples
a(12) = 124416 since 1 * 2 * 3 * 4 * 6 * 8 * 9 * 12 = 124416. These numbers are products of prime factors that are the distinct prime divisors of 12 = {2, 3}. From _David A. Corneth_, Feb 09 2015: (Start) Let p# be the product of primes up to p, A002110. Then a(13#) ~= 8.3069582 * 10 ^ 4133 a(17#) ~= 1.3953000 * 10 ^ 22689 a(19#) ~= 3.8258936 * 10 ^ 117373 a(23#) ~= 6.7960327 * 10 ^ 594048 a(29#) ~= 1.3276817 * 10 ^ 2983168 a(31#) ~= 2.8152792 * 10 ^ 14493041 a(37#) ~= 1.9753840 * 10 ^ 69927040 Up to n = 11# already in the table. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..4619
- Encyclopedia Britannica, Regular Number (base-neutral definition)
- Eric W. Weisstein, Regular Number (decimal definition)
- Wikipedia, Regular Number (sexagesimal / Hamming number definition)
Crossrefs
Programs
-
Maple
A:= proc(n) local F, S, s, j, p; F:= numtheory:-factorset(n); S:= {1}; for p in F do S:= {seq(seq(s*p^j, j=0..floor(log[p](n/s))), s=S)} od; convert(S,`*`) end proc: seq(A(n), n=1..100); # Robert Israel, Feb 09 2015
-
Mathematica
regularQ[m_Integer, n_Integer] := Module[{omega = First /@ FactorInteger @ m }, If[Length[Select[omega, Divisible[n, #] &]] == Length[omega], True, False]]; a20140819[n_Integer] := Times @@ Flatten[Position[Thread[regularQ[Range[1, n], n]], True]]; a20140819 /@ Range[41] regulars[n_] := Block[{f, a}, f[x_] := First /@ FactorInteger@ x; a = f[n];{1}~Join~Select[Range@ n, SubsetQ[a, f@ #] &]]; Array[Times @@ regulars@ # &, 12] (* Michael De Vlieger, Feb 09 2015 *) Table[Times @@ Select[Range@ n, (Floor[n^#/#] - Floor[(n^# - 1)/#]) == 1 &], {n, 41}] (* Michael De Vlieger, May 26 2016 *)
-
PARI
lista(nn) = {vf = vector(nn, n, Set(factor(n)[,1])); vector(nn, n, prod(i=1, n, if (setintersect(vf[i], vf[n]) == vf[i], i, 1)));} \\ Michel Marcus, Aug 23 2014
-
PARI
for(n=1, 100, print1(prod(k=1, n, k^(floor(n^k/k) - floor((n^k - 1)/k))),", ")) \\ Indranil Ghosh, Mar 22 2017
-
Python
from sympy import primefactors def A243103(n): y, pf = 1, set(primefactors(n)) for m in range(2,n+1): if set(primefactors(m)) <= pf: y *= m return y # Chai Wah Wu, Aug 28 2014
-
Scheme
;; A naive implementation, code for A123275bi given under A123275: (define (A243103 n) (let loop ((k n) (m 1)) (cond ((= 1 k) m) ((= 1 (A123275bi n k)) (loop (- k 1) (* m k))) (else (loop (- k 1) m))))) ;; Antti Karttunen, Mar 22 2017
Formula
a(n) = product of terms of n-th row of irregular triangle A162306(n,k).
a(n) = Product_{k=1..n} k^( floor(n^k/k)-floor((n^k -1)/k) ). - Anthony Browne, Jul 06 2016
From Antti Karttunen, Mar 22 2017: (Start)
a(n) = Product_{k=2..n, A123275(n,k)=1} k.
(End)
Comments