cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243103 Product of numbers m with 2 <= m <= n whose prime divisors all divide n.

Original entry on oeis.org

1, 2, 3, 8, 5, 144, 7, 64, 27, 3200, 11, 124416, 13, 6272, 2025, 1024, 17, 35831808, 19, 1024000, 3969, 247808, 23, 859963392, 125, 346112, 729, 2809856, 29, 261213880320000000, 31, 32768, 264627, 18939904, 30625, 26748301344768, 37, 23658496, 369603, 32768000000, 41
Offset: 1

Views

Author

Michael De Vlieger, Aug 19 2014

Keywords

Comments

This sequence is the product of n-regular numbers.
A number m is said to be "regular" to n or "n-regular" if all the prime factors p of m also divide n.
The divisor is a special case of a regular m such that m also divides n in addition to all of its prime factors p | n.
Analogous to A007955 (Product of divisors of n).
If n is 1 or prime, a(n) = n.
If n is a prime power, a(n) = A007955(n).
Note: b-file ends at n = 4619, because a(4620) has more than 1000 decimal digits.
Product of the numbers 1 <= k <= n such that (floor(n^k/k) - floor((n^k - 1)/k)) = 1. - Michael De Vlieger, May 26 2016

Examples

			a(12) = 124416 since 1 * 2 * 3 * 4 * 6 * 8 * 9 * 12 = 124416. These numbers are products of prime factors that are the distinct prime divisors of 12 = {2, 3}.
From _David A. Corneth_, Feb 09 2015: (Start)
Let p# be the product of primes up to p, A002110. Then
a(13#) ~= 8.3069582 * 10 ^ 4133
a(17#) ~= 1.3953000 * 10 ^ 22689
a(19#) ~= 3.8258936 * 10 ^ 117373
a(23#) ~= 6.7960327 * 10 ^ 594048
a(29#) ~= 1.3276817 * 10 ^ 2983168
a(31#) ~= 2.8152792 * 10 ^ 14493041
a(37#) ~= 1.9753840 * 10 ^ 69927040
Up to n = 11# already in the table.
(End)
		

Crossrefs

Cf. A162306 (irregular triangle of regular numbers of n), A010846 (number of regular numbers of n), A244974 (sum of regular numbers of n), A007955, A244052 (record transform of regular numbers of n).

Programs

  • Maple
    A:= proc(n) local F, S, s, j, p;
      F:= numtheory:-factorset(n);
      S:= {1};
      for p in F do
        S:= {seq(seq(s*p^j, j=0..floor(log[p](n/s))), s=S)}
      od;
      convert(S,`*`)
    end proc:
    seq(A(n), n=1..100); # Robert Israel, Feb 09 2015
  • Mathematica
    regularQ[m_Integer, n_Integer] := Module[{omega = First /@ FactorInteger @ m }, If[Length[Select[omega, Divisible[n, #] &]] == Length[omega], True, False]]; a20140819[n_Integer] := Times @@ Flatten[Position[Thread[regularQ[Range[1, n], n]], True]]; a20140819 /@ Range[41]
    regulars[n_] := Block[{f, a}, f[x_] := First /@ FactorInteger@ x; a = f[n];{1}~Join~Select[Range@ n, SubsetQ[a, f@ #] &]]; Array[Times @@ regulars@ # &, 12] (* Michael De Vlieger, Feb 09 2015 *)
    Table[Times @@ Select[Range@ n, (Floor[n^#/#] - Floor[(n^# - 1)/#]) == 1 &], {n, 41}] (* Michael De Vlieger, May 26 2016 *)
  • PARI
    lista(nn) = {vf = vector(nn, n, Set(factor(n)[,1])); vector(nn, n, prod(i=1, n, if (setintersect(vf[i], vf[n]) == vf[i], i, 1)));} \\ Michel Marcus, Aug 23 2014
    
  • PARI
    for(n=1, 100, print1(prod(k=1, n, k^(floor(n^k/k) - floor((n^k - 1)/k))),", ")) \\ Indranil Ghosh, Mar 22 2017
    
  • Python
    from sympy import primefactors
    def A243103(n):
        y, pf = 1, set(primefactors(n))
        for m in range(2,n+1):
            if set(primefactors(m)) <= pf:
                y *= m
        return y # Chai Wah Wu, Aug 28 2014
    
  • Scheme
    ;; A naive implementation, code for A123275bi given under A123275:
    (define (A243103 n) (let loop ((k n) (m 1)) (cond ((= 1 k) m) ((= 1 (A123275bi n k)) (loop (- k 1) (* m k))) (else (loop (- k 1) m)))))
    ;; Antti Karttunen, Mar 22 2017

Formula

a(n) = product of terms of n-th row of irregular triangle A162306(n,k).
a(n) = Product_{k=1..n} k^( floor(n^k/k)-floor((n^k -1)/k) ). - Anthony Browne, Jul 06 2016
From Antti Karttunen, Mar 22 2017: (Start)
a(n) = Product_{k=2..n, A123275(n,k)=1} k.
For n >= 1, A046523(a(n)) = A283990(n).
(End)