cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242962 a(1) = a(2) = 0; for n >= 3: a(n) = (n*(n+1)/2) mod antisigma(n) = A000217(n) mod A024816(n).

Original entry on oeis.org

0, 0, 0, 1, 6, 3, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2014

Keywords

Comments

A000217(n) = triangular numbers, A024816(n) = sum of numbers less than n which do not divide n.
a(n) = sigma(n) = A000203(n) for n = 5 and n>= 7 (see A242963).

Examples

			a(6) = 3 because A000217(6) mod A024816(6) = 21 mod 9 = 3.
		

Crossrefs

Programs

  • Magma
    [((n*(n+1)div 2) mod (n*(n+1)div 2-SumOfDivisors(n))): n in [3..1000]]
  • Mathematica
    Array[If[# < 3, 0, Mod[PolygonalNumber@ #, Total@ Complement[Range@ #, Divisors@ #]]] &, 65] (* Michael De Vlieger, Jan 28 2020 *)

A242963 Numbers n such that A242962(n) = sigma(n) = A000203(n).

Original entry on oeis.org

5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2014

Keywords

Comments

A242962(n) = (n*(n+1)/2) mod antisigma(n) = A000217(n) mod A024816(n).
Union of number 5 and numbers >= 7.
Conjecture: this sequence lists all the positive integers n such that, for some integer k, (sin(k*Pi/n))^2 is irrational. - Lorenzo Sauras Altuzarra, Jan 27 2020

Crossrefs

Programs

  • Magma
    [n: n in [3..100000] | ((n*(n+1)div 2) mod (n*(n+1)div 2-SumOfDivisors(n))) eq (SumOfDivisors(n))]
  • Mathematica
    Select[Range[3, 71], DivisorSigma[1, #] == Mod[PolygonalNumber@ #, Total@ Complement[Range@ #, Divisors@ #]] &] (* Michael De Vlieger, Jan 28 2020 *)

A243117 Possible values of A242962 in increasing order.

Original entry on oeis.org

0, 1, 3, 6, 8, 12, 13, 14, 15, 18, 20, 24, 28, 30, 31, 32, 36, 38, 39, 40, 42, 44, 48, 54, 56, 57, 60, 62, 63, 68, 72, 74, 78, 80, 84, 90, 91, 93, 96, 98, 102, 104, 108, 110, 112, 114, 120, 121, 124, 126, 127, 128, 132, 133, 138, 140, 144, 150, 152, 156, 158
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2014

Keywords

Comments

A242962(n) = (n*(n+1)/2) mod antisigma(n) = A000217(n) mod A024816(n); where A000217(n) = triangular numbers, A024816(n) = sum of numbers less than n which do not divide n.
Complement of A243118.
a(n) = A002191(n+1) for n >= 5; where A002191 = possible values of sigma(n).

Examples

			0 is in the sequence because there is a number m such that A242962(m) = 0; m = 3.
		

Crossrefs

Showing 1-3 of 3 results.