cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243180 Numbers of the form 8x^2+xy-8y^2.

Original entry on oeis.org

0, 1, 4, 8, 9, 16, 22, 25, 26, 32, 34, 36, 44, 46, 49, 52, 58, 61, 62, 64, 67, 68, 72, 81, 88, 92, 100, 104, 113, 116, 118, 121, 124, 128, 136, 143, 144, 146, 157, 158, 169, 176, 178, 184, 187, 193, 196, 197, 198, 200, 208, 221, 225, 227, 232, 234, 236, 241, 242, 244, 248, 253, 256, 257, 268, 272, 274, 278, 286, 288, 289, 292, 299, 306, 316, 319, 324, 338, 341
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2014

Keywords

Comments

Discriminant 257.
32*a(n) has the form z^2 - 257*y^2, where z = 16*x+y. [Bruno Berselli, Jun 20 2014]

Crossrefs

Primes: A141167. Cf. A243181, A141168.

Programs

  • Mathematica
    maxTerm = 400; m0 = 10; dm = 10; Clear[f]; f[m_] := f[m] = Table[8*x^2 + x*y - 8*y^2 , {x, -m, m}, {y, -m, m}] // Flatten // Union // Select[#, 0 <= # <= maxTerm&]&; f[m0]; f[m = m0]; While[f[m] != f[m - dm], m = m + dm]; f[m] (* Jean-François Alcover, Jun 04 2014 *)
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([8, 1, -8])
    print([0]+Q.represented_positives(341)) # Peter Luschny, Oct 26 2016