A243262 Decimal expansion of the generalized Glaisher-Kinkelin constant A(2).
1, 0, 3, 0, 9, 1, 6, 7, 5, 2, 1, 9, 7, 3, 9, 2, 1, 1, 4, 1, 9, 3, 3, 1, 3, 0, 9, 6, 4, 6, 6, 9, 4, 2, 2, 9, 0, 6, 3, 3, 1, 9, 4, 3, 0, 6, 4, 0, 3, 4, 8, 7, 0, 6, 0, 2, 2, 7, 2, 6, 1, 7, 4, 1, 1, 4, 5, 1, 6, 6, 0, 6, 6, 9, 7, 8, 2, 9, 0, 4, 0, 5, 2, 9, 2, 9, 3, 1, 3, 6, 2, 5, 5, 4, 8, 0, 8, 8, 5
Offset: 1
Examples
1.03091675219739211419331309646694229...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2002
- J. Choi and H. M. Srivastava, Certain classes of series involving the zeta function, J. Math. Annal. Applic. 231 (1999) 91-117.
- K. Kimoto, N. Kurokawa, C. Sonoki, M. Wakayama, Some examples of generalized zeta regularized products, Kodai Math. J. 27 (2004), 321-335.
- Tobias Kyrion, A closed-form expression for zeta(3), arXiv:2008.05573 [math.GM], 2020.
- Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant
Crossrefs
Programs
-
Mathematica
RealDigits[Exp[Zeta[3]/(4*Pi^2)], 10, 99] // First RealDigits[Exp[N[(BernoulliB[2]/4)*(Zeta[3]/Zeta[2]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *)
-
PARI
exp(zeta(3)/(4*Pi^2)) \\ Felix Fröhlich, Jun 27 2019
Formula
A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(0) = sqrt(2*Pi) (A019727),
A(1) = A = Glaisher-Kinkelin constant (A074962),
A(2) = exp(-zeta'(-2)) = exp(zeta(3)/(4*Pi^2)).
Equals exp(-A240966). - Vaclav Kotesovec, Feb 22 2015
Comments