cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243264 Decimal expansion of the generalized Glaisher-Kinkelin constant A(4).

Original entry on oeis.org

9, 9, 2, 0, 4, 7, 9, 7, 4, 5, 2, 5, 0, 4, 0, 2, 6, 0, 0, 1, 3, 4, 3, 6, 9, 7, 7, 6, 2, 5, 4, 4, 3, 3, 5, 6, 7, 3, 6, 9, 0, 4, 8, 5, 1, 2, 7, 6, 1, 8, 8, 0, 8, 9, 3, 5, 2, 0, 9, 4, 6, 1, 4, 9, 1, 5, 5, 4, 1, 4, 5, 3, 8, 5, 3, 8, 9, 4, 5, 9, 7, 6, 1, 8, 0, 5, 7, 7, 3, 6, 1, 7, 2, 9, 5, 6, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Comments

Also known as the 4th Bendersky constant.

Examples

			0.9920479745250402600134369776254433567369...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[-3*Zeta[5]/(4*Pi^4)], 10, 98] // First
    RealDigits[Exp[N[(BernoulliB[4]/4)*(Zeta[5]/Zeta[4]), 100]]] // First (* G. C. Greubel, Dec 31 2015 *)
  • PARI
    exp(-3*zeta(5)/(4*Pi^4)) \\ Stefano Spezia, Dec 01 2024

Formula

A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(4) = exp(-zeta'(-4)) = exp(-3*zeta(5)/(4*Pi^4)).
A(4) = exp((B(4)/4)*(zeta(5)/zeta(4))). - G. C. Greubel, Dec 31 2015