A243264 Decimal expansion of the generalized Glaisher-Kinkelin constant A(4).
9, 9, 2, 0, 4, 7, 9, 7, 4, 5, 2, 5, 0, 4, 0, 2, 6, 0, 0, 1, 3, 4, 3, 6, 9, 7, 7, 6, 2, 5, 4, 4, 3, 3, 5, 6, 7, 3, 6, 9, 0, 4, 8, 5, 1, 2, 7, 6, 1, 8, 8, 0, 8, 9, 3, 5, 2, 0, 9, 4, 6, 1, 4, 9, 1, 5, 5, 4, 1, 4, 5, 3, 8, 5, 3, 8, 9, 4, 5, 9, 7, 6, 1, 8, 0, 5, 7, 7, 3, 6, 1, 7, 2, 9, 5, 6, 4, 3
Offset: 0
Examples
0.9920479745250402600134369776254433567369...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2002
- Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant.
Crossrefs
Programs
-
Mathematica
RealDigits[Exp[-3*Zeta[5]/(4*Pi^4)], 10, 98] // First RealDigits[Exp[N[(BernoulliB[4]/4)*(Zeta[5]/Zeta[4]), 100]]] // First (* G. C. Greubel, Dec 31 2015 *)
-
PARI
exp(-3*zeta(5)/(4*Pi^4)) \\ Stefano Spezia, Dec 01 2024
Formula
A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(4) = exp(-zeta'(-4)) = exp(-3*zeta(5)/(4*Pi^4)).
A(4) = exp((B(4)/4)*(zeta(5)/zeta(4))). - G. C. Greubel, Dec 31 2015
Comments